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Abstract 

Background:  Many approaches have been developed to overcome technical noise 
in single cell RNA-sequencing (scRNAseq). As researchers dig deeper into data—look-
ing for rare cell types, subtleties of cell states, and details of gene regulatory net-
works—there is a growing need for algorithms with controllable accuracy and fewer ad 
hoc parameters and thresholds. Impeding this goal is the fact that an appropriate null 
distribution for scRNAseq cannot simply be extracted from data in which ground truth 
about biological variation is unknown (i.e., usually).

Results:  We approach this problem analytically, assuming that scRNAseq data reflect 
only cell heterogeneity (what we seek to characterize), transcriptional noise (temporal 
fluctuations randomly distributed across cells), and sampling error (i.e., Poisson noise). 
We analyze scRNAseq data without normalization—a step that skews distributions, 
particularly for sparse data—and calculate p values associated with key statistics. We 
develop an improved method for selecting features for cell clustering and identify-
ing gene–gene correlations, both positive and negative. Using simulated data, we 
show that this method, which we call BigSur (Basic Informatics and Gene Statistics 
from Unnormalized Reads), captures even weak yet significant correlation structures 
in scRNAseq data. Applying BigSur to data from a clonal human melanoma cell line, we 
identify thousands of correlations that, when clustered without supervision into gene 
communities, align with known cellular components and biological processes, 
and highlight potentially novel cell biological relationships.

Conclusions:  New insights into functionally relevant gene regulatory networks can be 
obtained using a statistically grounded approach to the identification of gene–gene 
correlations.
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Background
Single cell RNA-sequencing (scRNAseq), along with the related method of single 
nucleus RNA-sequencing, now offer researchers unparalleled opportunities to inter-
rogate cells as individuals. Methods have been developed to classify cell types; iden-
tify gene expression markers; infer lineages; learn gene regulatory relationships, and 
examine the effects of experimental manipulations on both levels of gene expression 
and cell type abundances [1–7]. Because scRNAseq data are noisy, reliable inference 
requires leveraging information across many cells, trading off sensitivity for statisti-
cal power. How to handle that tradeoff should depend, ideally, on one’s goal. Unsu-
pervised clustering of large numbers of transcriptionally very different cells (“cell 
types”) into small numbers of groups of similar size allows for a great deal of lati-
tude in aggregating information across cells; it is thus not surprising that many dif-
ferent clustering approaches perform well. Other tasks, such as ordering cells along 
a continuum of gene expression change, or picking out rare cell populations within 
much larger groups, are less forgiving, and a plethora of different approaches cur-
rently compete for investigators’ attention [8–23]. Assessing the performance of such 
methods is frequently hindered by a lack of knowledge of ground truth.

A particularly challenging application of scRNAseq is the identification of pat-
terns of gene co-expression. The identification of large-scale blocks of co-expressed 
genes—co-expression “modules”—can provide an alternative method for classifying 
cells when traditional clustering fails [24]. In contrast, smaller-sized blocks of gene 
co-expression have the potential to reflect true gene-regulatory networks that relate 
to specific functions [25]. This is because random transcriptional noise in gene cir-
cuits should induce weak but real correlations among regulatory genes and their tar-
gets. Indeed, it has long been proposed that gene regulatory links could be discovered 
solely from the weak gene expression correlations that one might encounter when 
studying otherwise homogenous populations of cells [26–32].

Unfortunately, identifying small yet significant gene expression correlations in sin-
gle cell data requires a degree of statistical power that scRNAseq applications rarely 
strive for (and, to be fair, rarely need to). Yet, as greater numbers of scRNAseq data-
sets accumulate, with a growing trend toward increasing numbers of cells per dataset, 
we wondered whether substantial amounts of novel information about gene co-reg-
ulation might be accessible simply through a more in-depth examination of pairwise 
gene expression correlations.

One of the main challenges in pursuing such a program is the absence of an 
accepted statistical model for pairwise correlations in scRNAseq data. Only with a 
model can one define a null hypothesis by which to judge whether observations are 
significant. Unfortunately, with scRNAseq, there is not good consensus regarding 
the model to use for the data distributions of individual genes, much less their cor-
relations. The common approach of fitting individual gene data to ad hoc analytical 
distributions (e.g. “zero-inflated negative binomial” [33]; reviewed by [34]), has met 
with frequent criticism that is difficult to dismiss [35–38]. One may seek to circum-
vent such concerns by attempting to learn empirical distributions on a case-by-case 
basis from data, but this typically requires making assumptions about the amount and 
distribution of actual biological variation in the data, which are frequently unknown. 
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Furthermore, pitfalls in implementing empirical methods can be hard to avoid, par-
ticularly with high-order statistical information, such as correlations. For example, 
the seemingly reasonable intuition that one might be able to construct the distribu-
tion of the correlation coefficient under the null hypothesis simply by randomly per-
muting elements is actually incorrect [39]. So, as we will show below, is the intuition 
that one can improve the detection of gene correlations by averaging over groups of 
similar cells (i.e., creating “metacells”) prior to calculation of correlation coefficients.

One of the major obstacles to defining an appropriate data distribution for scRNAseq 
data is the fact that underlying sources of technical variation are not fully understood, 
nor is the range of biological variation in biologically “equivalent” cells fully known. Here 
we begin by re-considering these factors, and leveraging the work of others, in pursuit 
of an analytical model of null correlation distributions that makes the fewest ad hoc 
assumptions and minimizes adjustable parameters. We show that the approach that 
emerges has the power to identify subtle yet real correlations, both positive and nega-
tive, in scRNAseq data, even among genes in modest numbers of cells that are relatively 
sparsely sequenced. Ultimately this method should be applicable not only to the identi-
fication of gene regulatory interactions, but to more complex tasks based on gene–gene 
correlations—such as the identification of cellular trajectories [40] and “tipping points” 
[41]—as well as providing a means to achieve a more principled approach to basic, early 
steps in scRNAseq analysis—such as normalization, batch correction, feature selection 
and clustering.

Results
The significance of gene–gene correlations

The statistical significance of correlations is rarely discussed because, for many common 
kinds of data—those that are continuous and at least approximately normal in distribu-
tion—the magnitude of correlation and its significance are related in a simple way that 
depends only on the number of measurements, and not the data distributions. Owing 
to Fisher [42], for any Pearson correlation coefficient (PCC), the p value (probability 
of observing |PCC|≥ x by chance) may be estimated as Erfc

[√
(n− 3)/2 arctanh(|x|)

]

 , 
where n is the number of samples, and Erfc is the complement of the Error function (we 
refer to this expression henceforth as the “Fisher formula”).

Because scRNAseq data are both discrete and generally not normally distributed, p 
values obtained using the Fisher formula cannot be accepted as accurate, but just how 
far off will they be? Fig. 1 explores that question through simulation. Assuming Poisson-
distributed data, and gene expression vectors of 500 cells in length, the formula does 
quite poorly for vectors of mean < 1, i.e., where the expected proportion of zeros exceeds 
37%, assigning p values that are too low for positive correlations, and too high for nega-
tive ones (Fig. 1A). For distributions with mean ≥ 1 (fewer than 37% zeros on average), 
the formula does reasonably well down to p values as low as 10−4 but deviates progres-
sively thereafter. This degree of accuracy would be a problem for any genome-wide 
analysis of correlations: To analyze pair-wise correlations among m genes one must test 
m(m − 1)/2 hypotheses. With values of m often ≥ 12,000, this amounts to > 7 × 108 simul-
taneous tests, such that statistical significance of any single observation could potentially 
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require p as low as 10−9, a value for which we may estimate, by extrapolation, that the 
Fisher formula is highly inaccurate even for genes with mean expression = 1.

The simulations in Fig. 1A, B assume Poisson-distributed data but, as is often pointed 
out, scRNAseq data are usually over-dispersed relative to the Poisson distribution (more 
on this below). As shown in Fig. 1C, adding in such additional variance causes simulated 
data to deviate even further from the Fisher formula.

Further problems arise when considering that scRNAseq data always come from 
collections of cells with widely varying total numbers of UMI. Depending on the 
platform, such “sequencing depth” can vary over orders of magnitude, which is why 
normalization is usually considered a necessary early step in data analysis. Without 
normalization, it is obvious that many spurious gene–gene correlations would be 
detected, as any difference in sequencing depth between cells would, if not corrected 
for, induce positive correlation across all expressed genes.

As one might expect, normalizing individual reads by scaling them to each cell’s 
sequencing depth eliminates this bias, restoring the expected value of PCC under the 
null hypothesis to zero. Yet normalization does not restore the distribution of PCCs 
to what it would have been had all cells been sequenced equally. The consequences 
can be dramatic, as shown in Fig.  1D, E, where we simulate a case in which “true” 
gene expression is the same in each of 500 cells, but observed gene expression is a 

Fig. 1  Relationship between Pearson correlation coefficient, vector sparsity and p value. The panels 
compare p values determined empirically by correlating 50,000 pairs of random, independent vectors of 
length 500 with p values predicted by the Fisher formula. A Data were independent random variates from 
Poisson distributions with means as indicated. The dashed line shows the output of the Fisher formula. B 
Even for vectors drawn from a distribution with mean = 1, the Fisher formula significantly mis-estimated p 
values smaller than 10−4. C Poor performance of the Fisher formula is worsened when data are drawn from 
a Poisson-log-normal distribution, rather than a Poisson distribution (in this case the underlying log-normal 
distribution had a coefficient of variation of 0.5). D–E Data were simulated under the scenario that gene 
expression is the same in every cell, but due to differences in sequencing depth, observed gene expression 
varies according to the depths shown in the inset to panel (D). In panel (D), true gene expression was 
adjusted so that observed gene expression after normalization would have a mean of 1, and the Pearson 
correlation coefficients (PCCs) obtained by correlating randomly chosen vectors are shown. Panel D plots 
empirically derived p values as a function of PCC, whereas panel E displays histograms of PCCs. Compared 
with data that do not require normalization, associated p values from normalized data are even more 
removed from the predictions of the Fisher formula
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Poisson random variate from a mean that was scaled by a factor chosen from a dis-
tribution of cell-specific sequencing depths similar to what one might observe in a 
typical scRNAseq experiment, using the 10X Chromium platform (inset, Fig.  1D). 
Despite mean gene expression being ~ 1, the relationship between PCC and p value 
more closely resembles the case (in the absence of sequencing depth variation) where 
the mean is 0.01 (Fig. 1A). This is surprising, given that the average fraction of zeros 
in the normalized vectors was only 0.68 (which, for Poisson-distributed data, would 
be expected to occur at a mean expression level of 0.39). In short, for gene expression 
data resembling what is typically obtained in scRNAseq, the Fisher formula is highly 
unsuitable, for most pairs of genes, for estimating the significance of correlations.

An analytical model for the distribution of correlations

The data in Fig.  1 indicate that the relationship between PCCs and p values is highly 
sensitive both to data structure and procedures intended to “correct” for technical varia-
tion. Because of this, we were concerned that a suitable null model for the distribution of 
correlations might be difficult to estimate empirically, especially when the true biological 
variation in most datasets is unknown. We therefore turned to constructing a null model 
analytically, attempting to account for known sources of variation (beside meaningful 
biological variation). The three sources considered were (1) variation introduced by 
imperfect normalization; (2) technical variation due to random sampling of transcripts 
during library preparation and sequencing; and (3) variation due to stochasticity of gene 
expression. The last of these cannot properly be called technical variation—fluctuating 
gene expression is a biological phenomenon—but like technical noise, gene expression 
fluctuation is usually an unwanted source of variation, and its effects need somehow to 
be suppressed.

With regard to the first source, we follow [43] in correcting not the gene expression 
data points themselves, but rather their Pearson residuals. Traditionally, the Pearson 
residual Pij for cell i and gene j, is defined as

where xij is the gene expression value for cell i and gene j, and µj is the mean expression 
of gene j averaged over all cells. As the Pearson residual is mean-centered, its expecta-
tion value, E[Pij] , is zero; thus, the average of Pearson residuals for a large number of xij 
drawn from a single distribution should approach zero. The average of squares of Pear-
son residuals can be seen, by inspection, to approach the variance divided by the mean 
of the distribution from which the xij derive. Variance divided by mean is also known as 
the Fano factor and is often used to assess whether data are consistent with a Poisson 
distribution since, for any Poisson distribution regardless of mean, E[P2

ij] = 1.
Pearson residuals may also be used to construct PCCs, which are commonly defined in 

terms of variances and covariances, but may be equivalently expressed as:
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where PCCa×b is the Pearson correlation coefficient between genes a and b, n the num-
ber of cells, and φa and φb represent the Fano factors for genes a and b, respectively, i.e.

Since E[Pij] = 0 for any gene, it follows that E[PCCa×b] = 0 , as long as all the expres-
sion values for gene a are drawn from a single distribution, and those for b are inde-
pendently drawn from a single distribution.

However, in scRNAseq, unequal sequencing depth means that the expression values 
for any given gene are generally not drawn from a common distribution, but rather 
from one that is different for each cell. Interestingly, dividing xij in a Pearson residual 
by an appropriate scaling constant—i.e. normalizing the data—will restore E[Pij] to 0, 
but will not restore the higher moments of Pij , e.g., E[P2

ij] �= 1. To capture the correct 
second moment, one must scale the value of µj inside each Pearson residual, rather 
than scaling xij . As [43] have pointed out, we can define a separate µij for each cell 
and gene:

and consequently, define a corrected Pearson residual as 

Although this transformation does not recover moments of the Pearson residual 
beyond the first two, it provides a principled alternative to traditional normalization. 
Moreover, by permitting calculation of a corrected Fano factor that has the appropri-
ate expectation value under the assumption of Poisson distributed data, it can be used 
to test that assumption, in real data.

Source #2 refers to technical variation due to random, independent sampling of dis-
crete numbers of transcripts. Although the sampling process in scRNAseq involves 
several discrete steps, including cell lysis, library preparation and DNA sequencing, 
several groups have argued that, at least at modest to low expression levels, simple 
Poisson “noise” can reasonably model the variation derived from these processes [35–
38]. We accept this assumption here, but note that, in the following derivations, the 
Poisson distribution could just as easily be replaced by another known distribution, if 
it were adequately justified.

Finally, source #3 refers to the fact that “equivalent” cells are usually only equivalent 
in a time-averaged sense, i.e., transcript numbers will fluctuate around some mean 
value. Both theory and observation support the conclusion that these fluctuations can 
be large [30, 44–46]. The actual magnitude seems to differ for different categories of 
genes, but data from single-molecule transcript counting [44] suggest that, for most 
genes, the distribution of transcripts typically is approximately log-normal (consist-
ent with the theoretical work of [47]), with a coefficient of variation in the range of 
0.2–0.6.
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Thus, even if library synthesis and sequencing performed identically across cells, 
one should not expect to observe Poisson-distributed reads. Under the reasonable 
assumption that gene expression fluctuations and sampling are independent, the vari-
ance of the combined process should be the sum of the variances of the composing 
processes. Since both processes have the same mean, we can re-state this thusly: the 
Fano factor of the combined process should be the sum of the Fano factors of the 
composing processes. One can then use this fact to further adjust the Pearson resid-
ual, and subsequently the Fano factor. Specifically, we define a “modified corrected 
Pearson residual” as:

where c represents the coefficient of variation of gene expression for gene j. Accordingly, 

the expectation value for 
(

P′
ij

)2
 becomes

which resembles a Fano factor divided by 
(

1+ c2j µij

)

 . Since c2µij can alternatively be 

written as σij
µij

 , where s is the standard deviation of gene expression fluctuations, the term 
(

1+ c2j µij

)

 is simply the sum of the Fano factors for Poisson sampling (unity) and gene 

expression fluctuation ( c2j µij ). Dividing by that sum essentially removes the additional 

variance due to gene expression noise from the expectation value of 
(

P′
ij

)2
 , restoring that 

value to 1.
In this way, one may define a “modified corrected Fano factor” φ′ equal to the expecta-

tion value of 
(

P′
ij

)2
 . Likewise, we may use φ′ to define a modified corrected Pearson cor-

relation coefficient, PCC′:

Notice that φ′ provides a measure of the degree to which a gene’s expression is more 
variable than expected by chance, and PCC′ provides a metric by which gene-pairs are 
judged more positively or negatively correlated than expected by chance, correcting 
in both cases for unequal sequencing across cells (without normalizing data) and the 
expected noisiness of gene expression.

To use these statistics in practice, one needs to know not only their expectation val-
ues but their full distributions under the null hypothesis. Constructing those analytically 
requires not only the coefficient of variation of gene expression noise, c, but the full dis-
tribution of that noise, which in the absence of information to the contrary, we will take 
to be log-normal [47], noting that any other distribution could as easily be substituted in 
the following discussion.
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We thus treat xij as a Poisson random variable from a distribution whose mean is a log-
normal random variable with a coefficient of variation of c (we refer to this compound 
distribution as Poisson-log-normal). Although an analytical form for the probability 
mass function of the Poisson-log-normal distribution is not known, we may derive ana-
lytical forms for an arbitrary number of its moments, as a function of µ (the mean) and c 
(see Methods). Thus, one can calculate for every cell i and gene j, given the observed 
values of µij, the moments of the expected distributions of the P′

ij under the null hypoth-

esis, and subsequently those for the 
(

P′
ij

)2
 . From there one can calculate the moments of 

any number of products and sums of P′
ij and 

(

P′
ij

)2
 , such that, eventually, the moments of 

φ′ and PCC′ under the null hypothesis are ultimately obtained (see Appendix). Given a 
finite number of moments, one can estimate the tails of the distributions of these statis-
tics (see Methods), allowing one to calculate the probability of extreme values of φ′ and 
PCC′ arising by chance (p values).

This method, which we refer to as BigSur (Basic Informatics and Gene Statistics from 
Unnormalized Reads), provides an approach for discovering genes that are significantly 
variable across cells (based on φ′ ), and gene pairs that are significantly positively or 
negatively correlated (based on PCC′), automatically accounting for the widely varying 
distributions of these statistics as a function of gene expression level and vector length 
(number of cells). The one free parameter in the method, c, is relatively constrained, as 
its average value (over all genes) can be estimated from a plot of φ′ versus mean expres-
sion (see below). In this manner, one can avoid the use of arbitrary thresholds or cut-
offs in deciding which genes are significantly “highly” variable (e.g., for dimensionality 
reduction and cell classification) and which genes are significantly positively and nega-
tively correlated (e.g., to discover gene expression modules and construct regulatory 
networks).

Performance on simulated data

In Fig. 2 we simulate gene expression data for 1000 genes and 999 cells, under the null 
model described above (i.e., complete independence), varying “true” mean expression 
widely and uniformly over the genes, such that the most highly expressed genes aver-
age 3467 transcripts/cell and the most lowly expressed 0.0351 per cell. “Observed” gene 
expression values are then obtained by randomly sampling from a Poisson log-normal 
distribution with c = 0.5, in which the gene-specific mean is first scaled in each cell 
according to a pre-defined distribution of sequencing depth factors (chosen to mimic 
typical ranges of sequencing depth when using the 10X Chromium platform). The result 
is a set of gene expression vectors of length 999, with means varying between 0.001 and 
231.

As shown in Fig. 2A, for most genes with mean expression greater than ~ 0.1 reads/
cell, uncorrected Fano factors exceed 1, and rise linearly with expression level. Normal-
izing the data—scaling expression in each cell to the relative sequencing depth of that 
cell—reduces high-expression skewing somewhat, but also elevates the Fano factors for 
genes with low expression, driving them closer to 2. These results, in which the major-
ity of genes display Fano factors greater than 1, which rise further for highly expressed 
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genes, agree with the pattern most commonly seen in actual scRNAseq data. Values 
of the Fano factor for lowly expressed genes may be restored to near 1 by normalizing 
using SCTransform, an algorithm designed to correct for some of the variance-inflating 
aspects of normalization-by-scaling [48], but the presence of high Fano factors among 
the highly expressed genes persists.

In contrast, if we calculate the modified corrected Fano factor, φ′ , for each gene, using 
c = 0.5, we see that values are now centered around 1 at all expression levels (Fig. 2A). 

Fig. 2  Comparing uncorrected and modified corrected Fano factors and correlation coefficients. Random, 
independent, uncorrelated gene expression data was generated for 1000 genes in 999 cells, under the 
assumption that observations are random Poisson variates from a per-cell expression level that is itself a 
random variate of a log-normal distribution, scaled by a sequencing depth factor that is different for each 
cell (see methods). A Uncorrected ( φ ) or modified corrected ( φ′ ) Fano factors are plotted as a function of 
mean expression level for each gene. Uncorrected factors were calculated either without normalization, 
or with default normalization (scaling observations by sequencing depth factors, learned by summing the 
gene expression in each cell). Uncorrected Fano factors were also calculated using SCTransform [48] as an 
alternative to default normalization. Modified corrected Fano factors were obtained by applying BigSur to 
unnormalized data, using a coefficient of variation parameter of c = 0.5. B Modified corrected Fano factors 

( φ′ ) were calculated as in A, but using different values of c. The data suggest that an optimal choice of c can 
usually be found by examining a plot of φ′ versus mean expression. C Empirical p values associated with 
uncorrected (PCC) or modified corrected (PCC′) Pearson correlation coefficients were calculated for pairwise 
combinations of genes in bins of different mean gene expression level (µ); examples are shown for four 
representative bins (both genes derived from the same bin). With increasing gene expression levels, the p 
value versus PCC relationship begins to approach the Fisher formula (dashed curve), but it does so much 
sooner for PCC′ than PCC
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Note that choosing different values of c produces consistent positive or negative skew-
ing at mean gene expression values above 1 (Fig. 2B). Under the assumption that most 
genes in real data should not vary significantly across cells, one may therefore estimate 
the optimal choice of c for any data set by simply finding the value that minimizes such 
high-expression skewing of φ′.

Because it uses the moments of the Pearson residuals to calculate p values, BigSur 
assigns statistical significance to every gene’s φ′ . As expected, given that the data in 
Fig. 2A were random samples, no values of φ′ were found to be statistically significant 
at a Bonferroni-corrected p value threshold of 0.05, or a Benjamini-Hochberg [49] false 
discovery rate of 0.05. Indeed, the lowest uncorrected p value associated with any of the 
1000 genes in Fig. 2A was 0.001.

Similarly, when the same synthetic data are analyzed for gene–gene correlations, one 
may compare the PCC values produced directly from normalized expression data with 
the PCC′ values produced (from unnormalized data) by BigSur. As expected, both pro-
cedures return a distribution of values with zero mean, but PCC values are more broadly 
distributed than PCC′. Figure  2C shows the frequency at which various values of the 
correlation coefficient arise when vectors with different mean gene expression are cor-
related with each other. Although significant skewing from the Fisher formula is appar-
ent, especially at low values of gene expression, it is much greater for PCC than PCC′. 
Indeed, for moderately expressed genes (e.g., 1–10 unique molecular identifiers [UMI] 
per cell), only PCC′ returns values whose distribution is relatively insensitive to expres-
sion level.

Performance on real data

To characterize the performance of BigSur on real data, we used the droplet-based 
sequencing data of Torre et al. [50], obtained from a clonal isolate of a human melanoma 
cell line grown in culture. In this data set, the number of cells is large (8640), data were 
validated on a second sequencing platform as well as by single molecule FISH, and the 
broad distribution of sequencing depths was typical of droplet-based sequencing.

We deliberately chose a clonal cell line because tissues always contain multiple cell 
types, i.e., groups of cells that express large sets of genes in cell-type specific ways. In 
such heterogeneous samples, genes that are associated with cell type identity will neces-
sarily be strongly and densely correlated with each other; making the identification of 
correlations, in a sense, too easy—i.e., not a particularly good test of a method’s perfor-
mance—and not particularly informative (one may expect to identify as correlated more 
or less the same genes one would find by clustering cells by gene expression and testing 
for differential expression between clusters).

In contrast, the use of (ostensibly) homogeneous cells forces BigSur to operate on 
more subtle connections—for example, those involving fluctuations in function-specific 
gene regulatory networks—that cell clustering and differential expression would not eas-
ily detect.

Accordingly, scRNAseq data from these cells were subjected to minimal pre-process-
ing prior to analysis (see Methods), such that expression values were analyzed for 14,933 
genes. Total numbers of UMI per cell varied greatly, ranging from 67 to 90,494, with 90% 
of cells containing between 666 and 9004 UMI.
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First, we compared (uncorrected) PCCs for all gene–gene pairs, calculated using 
default-normalized expression data (i.e., data scaled to total UMI per cell), with PCC′ 
values returned by BigSur (Fig. 3A, B). In panel B, frequencies are scaled logarithmi-
cally, to better display the distribution of large absolute values. BigSur associated a 

Fig. 3  Statistical significance of pairwise gene correlations in data from a clonal cell line. A, B Using scRNAseq 
data from a human melanoma cell line [50] (8640 cells × 14,933 genes), pairwise values of PCC were 
calculated from normalized data, and PCC′ from raw data. Histograms display the frequency of observed 
values (the logarithmic axis in B emphasizes low-frequency events). Notice in B how positive skewing, also 
seen in simulated data (Fig. 2), is less for PCC′ than PCC. Dashed lines in B show thresholds at which Fisher 
formula-derived p values would fall below 1.1 × 10.−4. C, D Scatterplots showing p values assigned by BigSur 
to pairs of genes within two representative sets of bins of gene expression (for all pairwise combinations see 
Figs. S1, S2/Additional files 3, 4). The abscissa shows PCC (panel C) and PCC′ (panel D). The ordinate gives the 
negative log10 of p values determined by BigSur, i.e., larger values mean greater statistical significance. Orange 
and gray shading indicate gene pairs judged significant by BigSur (FDR < 0.02). Blue and orange show gene 
pairs that would have been judged statistically significant by applying the Fisher formula to the PCC or PCC′, 
using the same p value threshold as used by BigSur. The blue region contains gene pairs judged significant 
by the Fisher formula only, while the unshaded region shows gene pairs not significant by either method. 
Numbers in the lower right corner are the total numbers of possible correlations (blue), statistically significant 
correlations according to the Fisher formula (green), and statistically significant correlations according to 
BigSur (red). E, F ROC curves assessing whether the overall performance of the Fisher formula—applied either 
to PCC or PCC′—can be adequately improved either by using a more stringent p value cutoff (E) or limiting 
pairwise gene-correlations to those involving only genes with mean expression above a threshold level, µ (F)
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false discovery rate (FDR) of 2% to p values less than 1.15 × 10−4, at which threshold it 
detected 639,789 correlations, 350,466 of which were positive. For uncorrected PCCs, 
the same p value cutoff would translate, using the Fisher formula, to |PCC|> 0.041, 
which is displayed as a dotted line in Fig. 3B. Using this threshold, 1,484,156 correla-
tions would be considered significant. Comparison of histogram shapes shows that 
use of uncorrected PCCs particularly inflates positive correlations, especially large 
ones, and under-counts negative ones, which is consistent with the results obtained 
using simulated data (Fig. 2C).

To see how the discovery of correlations varied with gene expression level, we 
divided genes into 6 bins of different mean expression, and separately analyzed cor-
relations between genes in all 21 possible combinations of bins. The full data are 
presented in Figs. S1 and S2 (Additional files 3, 4), with two representative panels 
in Fig.  3C, D. Each point represents a gene–gene pair. The value on the abscissa is 
either the uncorrected PCC (Figs. 3C and S1) or modified corrected PCC′ (Figs. 3D 
and S2), and the value on the ordinate is the − log10 p value, as determined by Big-
Sur (i.e., the larger the number, the lower the p value). Shaded territories mark those 
data points that were judged statistically significant (FDR < 0.02) either by BigSur 
(orange and gray), or when p values were calculated by the Fisher formula (blue and 
orange; for further details see figure legend). The data confirm that the Fisher formula 
returns an excess of correlations, compared to BigSur, albeit less severely for PCC′ 
than for PCC. Examination of the full dataset (Figs. S1, S2) shows that many more 
truly significant correlations are found among highly expressed genes; and the Fisher 
formula performs worst when at least one of the pairs in a correlation is a lowly-
expressed gene. Indeed, as gene expression becomes high (e.g., mean value > 1 UMI 
per cell for both genes in a pair), the distribution of p values calculated by BigSur for 
PCC′ begins to approximate the Fisher formula reasonably well (Fig. S2), with devia-
tion apparent only for very low p values (− log10p > 10). This observation validates the 
accuracy of the method used by BigSur to recover p value distributions from the first 
five moments of the expected distributions of modified, corrected Pearson residuals 
(see “Methods” section).

Assuming, for the sake of illustration, that the correlations judged significant by Big-
Sur represent ground truth, we may then calculate levels of true- and false-positivity 
when p values are calculated by feeding either PCC or PCC′ into the Fisher formula. 
This enabled us to ask whether applying a more stringent p value cutoff, or thresholding 
gene expression (i.e., excluding genes below a certain expression level), might enable this 
simpler, formulaic approach to achieve an acceptable level of sensitivity and specificity. 
As shown by the receiver-operating characteristic (ROC) curves in Fig. 3E, the perfor-
mance of uncorrected PCCs is exceedingly poor regardless of p value threshold, with 
false positives exceeding true positives at all values. PCC′ does better, but to control 
FDR to < 10%, one still loses the ability to detect > 85% of true positives.

Arbitrarily thresholding gene expression performs somewhat better (Fig.  3F). For 
uncorrected PCCs, one must exclude all genes with average expression < 0.065 UMI/
cell to control the FDR at 5%, which for this dataset means discarding 67% of all gene 
expression data, and in return recovering only 33% of true positives. PCC′ does much 
better here: we may recover 81% of true positives at an FDR of 5% by discarding 
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the ~ 52% of genes with the lowest expression. While the exact numbers are likely to 
vary for different data sets, these observations suggest that, if one is willing to sacri-
fice the power to identify a substantial minority of correlations, feeding PCC′ (but 
not PCC) into the Fisher formula can represent an acceptable and computationally 
fast alternative to p value identification by BigSur.

Clustering using correlations

Although BigSur found 639,789 statistically significant correlations in this dataset (about 
0.57% of all possible pairwise correlations) the vast majority had quite small values of 
PCC′ (Fig. 3A, B), indicating that most statistically significant correlations were weak. 
To obtain a measure of correlation strength that could be compared across samples of 
different lengths (numbers of cells), we expressed each correlation in terms of an “equiv-
alent” PCC, which is simply the PCC value that, for continuous, normally-distributed 
data of the same length, would have produced the same p value (by the Fisher formula). 
As shown in Fig. S3 (Additional file 5), only 4335 gene pairs displayed equivalent PCCs 
greater than 0.2 or less than − 0.2.

Yet, despite the weak strength of most correlations, there are good reasons to believe 
them to be biologically relevant. One of the simplest comes from examining the fre-
quency at which correlations arise among paralogous genes and genes that encode pro-
teins that physically interact. It is known that gene paralogs are often co-regulated [51] 
leading us to expect paralog pairs to be enriched among bona fide correlations. It is also 
reasonable to expect that transcripts encoding proteins that interact will be co-expressed 
at least some of the time. As it happens, among the correlations identified by BigSur we 
observe ~ 12 fold enrichment for paralogs and ~ 7.5 fold enrichment for genes encoding 
physically-interacting proteins (see “Methods” section).

To divide the full set of correlations into potentially interpretable groups, we used a 
random-walk algorithm [52] to identify subnetworks more highly connected internally 
than to other genes; we refer to these as gene communities. Most communities were of 
modest size, with 94 of the 96 largest containing between 4 and 392 genes each. How-
ever, the largest two contained 2160 and 1570 genes respectively, were very densely con-
nected internally, and strongly anti-correlated with each other (Fig. 4A). These factors 
strongly suggest that these cells, despite being a clonal line, are heterogenous, falling into 
(at least) two distinct groups. Interestingly, the largest gene community contained vir-
tually the entire set of mitochondrially-encoded mitochondrial genes, and the second 
largest contained virtually all protein-coding ribosomal genes (for both cytoplasmic and 
mitochondrial ribosomes). Using the top 50 most-highly connected genes (those with 
the largest positive equivalent PCCs) in each of these communities as features, we per-
formed Leiden clustering on the modified corrected Pearson residuals of all 8640 cells, 
and easily subdivided them into three clusters of 5812, 1180 and 1638 cells, which we 
labeled as clusters 1,2 and 3, respectively (Fig. 4B; see “Methods” section).

We then analyzed each cluster independently by BigSur, re-calculating PCC′ values 
and statistical significance for each group of cells. Surprisingly, in each cluster BigSur 
again found two large, strongly anti-correlating communities, one of which contained 
the mitochondrial-encoded genes and the other the ribosomal protein genes. This led us 
to further subcluster cluster 1, again using the 50 most-highly connected genes in each 
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of these two communities as features and subdivided it into two groups of 4226 (cluster 
1.1) and 1582 cells (cluster 1.2).

Variable expression of mitochondrially-encoded genes is a common finding in scR-
NAseq. Their presence at high levels (e.g. > 25% of total UMI) is usually interpreted as 
an indication of a “low quality” cell—potentially one in which the plasma membrane 
has ruptured and cytoplasm has been lost—or perhaps a cell in the process of apopto-
sis [53]. Closer examination of the cell clusters identified in this dataset suggests these 
phenomena are likely only part of the explanation. In Fig. 4C, we plot mitochondrial-
encoded UMI versus total UMI for the entire set of cells, coloring them according 
to the four cell clusters mentioned above. Several distinct behaviors were noted. Cell 

Fig. 4  Clustering cells based on mitochondrial and ribosomal communities. A Correlations among the 
two largest gene communities detected by BigSur are shown. Vertices are genes, and edges—green 
and red—represent significant positive and negative correlations, respectively. Blue vertices represent 
members of the mitochondrially encoded gene community and brown vertices the ribosomal protein 
gene community (Labels have been omitted due to the large numbers of gene involved). B Using the top 
50 most highly positively connected vertices in the two communities as features, cells were subjected to 
PCA and Leiden clustering; the three clusters recovered are displayed by UMAP. C, D After a second round 
of clustering of Cluster 1, the resulting four cell groups were analyzed for the distribution of expression of 
ribosomal protein-coding and mitochondrially-encoded genes, as a function of total UMI in each cell. The 
results show that the four clusters form distinct groups based on their relative abundances of ribosomal 
and mitochondrial genes. E Results of applying BigSur to each cluster. Note the large decrease in statistically 
significant correlations—especially negative correlations—in any of the clusters when compared with results 
obtained using all of the cells together (> 600,000 total correlations). This is consistent with heterogeneity in 
the original sample, causing large blocks of genes to correlate and anti-correlate
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cluster 2 forms a coherent group with high mitochondrial expression that is linearly 
proportional to total UMI. Throughout this group, the percentage of total transcripts 
that is mitochondrial remains in a narrow band, with mean of 34% and coefficient of 
variation (CV) of 0.41. Cluster 3 displays low total UMI, and a mitochondrial frac-
tion centered around a mean of 21% (CV = 0.43). Cluster 1.2 has high mitochondrial 
expression, but even higher total UMI, such that the mitochondrial fraction averages 
9.7% (CV = 0.45), while cluster 1.1 has both low total UMI and low mitochondrial 
UMI (average mitochondrial fraction 8.2%, CV = 0.47).

In Fig. 4D, we also plot total UMI derived from ribosomal protein genes against total 
UMI. Of all the clusters, cluster 2 best fits the expectation for “damaged” cells: Mito-
chondrial and ribosomal UMI rise proportionately with total UMI (consistent with ran-
domly varying sequencing depths), but the proportion of mitochondrial UMI is almost 
three times higher, the proportion of ribosomal UMI almost three times lower, and 
total UMI about 2.5 times lower than in cluster 1.2, the only other cluster that displays a 
wide range of sequencing depths. Yet it is curious that the mitochondrial proportions in 
cluster 2 are so narrowly distributed around a mean; one might expect variable degrees 
of cytoplasm leakage following cell damage to produce a broad distribution beginning 
near cluster 1.2 and gradually tapering off. The absence of such behavior suggests that 
such cells are not merely variably damaged during preparation, but represent a distinct, 
possibly pre-existing state, perhaps associated with some form of cell stress or death 
(although we see no significant enrichment of gene expression associated with apoptosis 
[54] in cluster 2).

Even if we remove cluster 2 from further analysis, clusters 1.1, 1.2 and 3 also differ 
between each other in relative proportions of mitochondrially-encoded, ribosomal and 
total transcripts; however, the way in which they do so is not suggestive of any simple 
mechanism of cell damage (and overall mitochondrial content is not in the range that 

Fig. 5  Mitochondrial communities are a source of strong anti-correlations. Mitochondrially-encoded and 
ribosomal protein gene communities were identified in all clusters. Anti-correlations identified specifically 
between mitochondrially-encoded genes and ribosomal protein genes within the different clusters are 
shown in A (cluster 1.1), B (cluster 1.2), C (cluster 2) and D (cluster 3). Panel E shows additional anticorrelations 
in cluster 1.2 involving mitochondrially-encoded genes and glycolysis genes For ease of readability, 
mitochondrial genes have been highlighted in blue. Red links refer to negative correlations; green to positive



Page 16 of 43Silkwood et al. BMC Bioinformatics          (2024) 25:305 

would necessarily lead to exclusion from downstream scRNAseq analyses). As men-
tioned above, using the genes in the mitochondrially-encoded- and ribosomal-enriched 
communities as features, analysis of gene correlations using BigSur separately on each of 
the four clusters revealed anti-correlating communities of mitochondrially-encoded and 
ribosomal genes in every case (Fig. 5A–D; Table 2). In fact, even after another round of 
subclustering of the subclusters derived from cluster 1 (cluster 1.1 and cluster 1.2) using 
these genes as features, BigSur still identified distinct, anti-correlating mitochondrially-
encoded and ribosomal communities (not shown). These data strongly suggest that, 
notwithstanding effects of cell damage or cell death, there exists among healthy cells 
continuous, anti-correlated variation in both the mitochondrially-encoded and riboso-
mal protein genes, suggestive of some biologically meaningful regulatory relationship 
(discussed further below).

Analysis of gene communities

Figure  4E summarizes the results of using BigSur to identify significant correlations 
(FDR < 0.02) in each of the cell clusters described above (1.1, 1.2, 2 and 3). Because statis-
tical power to detect correlations falls with number of cells analyzed, one might expect 
to see the fewest significant correlations in the smallest clusters, but this was not the 
case. Instead, the clusters with the largest number of significant correlations were those 
with the highest average sequencing depth (Fig. 4C), suggesting that data sparsity has an 
especially strong influence on correlation detection.

Schadt and colleagues have recently argued [55] that negative correlations may be con-
sidered a strong indicator of cell heterogeneity. These authors argue that minimization 
of the proportion of negative gene–gene correlations provides a principled metric for 
determining when to cease sub-clustering cells. Consistent with this view, we observed 
that, as cells were successively subclustered, the proportion of negative correlations fell 
from 45% to about 20% (Fig.  4E). The clusters with the lowest proportion of negative 
correlations were clusters 1.2, 2 and 3. As cluster 2 had very high levels of mitochondri-
ally-encoded genes (33.7% of UMI), and cluster 3 had the lowest average UMI/cell (1273) 
of any cluster, we focused our analysis on cluster 1.2, which had both low levels of mito-
chondrial genes (9.7% of UMI) and high average UMI/cell (6252)..

Within cluster 1.2, we found that enrichment for correlated paralog pairs and genes 
whose products interact physically was much higher than when all 8640 cells had been 
considered together. Specifically, among the positive correlations, paralog pairs were 
enriched 55-fold, and links supported by protein–protein interactions 32-fold, over what 
would have been expected by chance. Indeed, 15% of all positive correlations in cluster 
1.2 corresponded to links supported by known protein–protein interactions.

Table 1, Additional file 2: Table S1 and Figs. S4–S7 (Additional files 6, 7, 8, 9) sum-
marize results for 13 of the largest gene communities detected in cluster 1.2, which 
collectively account for 1291 of the 2519 genes that showed any significant positive cor-
relations. Table 1 groups the genes of each community into functional categories accord-
ing to annotations found in the most recent release of the MSigDB database [56, 57]. 
Annotations identified using the Database for Annotation, Visualization and Integrated 
Discovery (DAVID [58]) are also shown in Additional file 2: Table  S1. In 11 of the 13 
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Table 1  Gene communities identified in cell subcluster 1.2

Community # of genes Category Gene names

A 253 Cell cycle, G2/M ANLN, ANP32B, ANP32E, ARHGAP11A, ARH-
GEF39, ARL6IP1, ASPM, AURKA, AURKB, BIRC5, 
BUB1, BUB1B, BUB3, CALM3, CASC5, CBX1, 
CCNA2, CCNB1, CCNB2, CCNF, CDC20, CDC25B, 
CDC27, CDCA2, CDCA3, CDCA8, CDK5RAP2, 
CDKN1B, CDKN3, CENPA, CENPE, CENPF, CEP55, 
CEP70, CHEK2, CIT, CKAP2, CKAP2L, CKAP5, 
CKS1B, CKS2, CNTRL, CTCF, DBF4, DDX39A, 
DEPDC1, DEPDC1B, DKC1, DLGAP5, DNAJA1, 
DNAJB1, DTYMK, DYNLL1, ECT2, EGR1, FAM64A, 
FAM83D, FANCD2, FOXM1, G2E3, GAS2L3, 
GPSM2, GTSE1, H2AFV, H2AFX, H2AFZ, HJURP, 
HMG20B, HMGB2, HMGB3, HMGN2, HMMR, 
HN1, HNRNPD, HP1BP3, HSP90AA1, HSPA8, 
ILF2, INCENP, KIAA1524, KIF11, KIF14, KIF15, 
KIF18A, KIF20A, KIF20B, KIF23, KIF2C, KIF4A, 
KIF5B, KNSTRN, KPNA2, KPNB1, LBR, LIN54, LSM6, 
MAD2L1, MIS18BP1, MKI67, MPHOSPH9, MTF2, 
MZT1, NDC80, NEIL3, NEK2, NUCKS1, NUF2, 
NUP37, NUSAP1, OIP5, PBK, PCF11, PDS5B, PIF1, 
PLK1, PLK4, PPP1R12A, PPP2R5C, PRC1, PRR11, 
PSMC3, PSRC1, PTTG1, RACGAP1, RAD21, RAN-
GAP1, RBM8A, RCCD1, RPS6KA5, SFPQ, SGOL1, 
SGOL2, SHCBP1, SMC4, SNRPA1, SNRPD1, 
SNRPD3, SPAG5, SPDL1, SRSF3, STMN1, TACC3, 
TICRR, TOP2A, TPX2, TRIP13, TROAP, TTK, TUBA1B, 
TUBA1C, TUBB2A, TUBB4B, UBE2C, UBE2S, 
UTP18, WHSC1, XPO1

Cell cycle, other ACTB, ACTL6A, BRD7, CACYBP, CENPN, CENPW, 
CHAMP1, DYNLT1, FXR1, H3F3B, HES1, KIAA0586, 
LMNB2, LYAR, MAGOHB, NCAPD2, NCAPG, PAR-
PBP, PIM3, POLR2K, PPP4R2, RAN, RHEB, SETD2, 
SKA2, SNRPB, UBE2D3, YY1, ZWILCH

Spliceosome ACIN1, LSM4, LSM5, PPIH, RBMX, SRRM1, SRRT, 
SRSF7, WBP4

Not accounted for (58/253) = 23% ABHD2, ACAT2, ACTG1, AFF4, AHSA1, ARPC5L, 
AZIN1, BNIP2, BRIX1, C1orf52, C5orf34, CCDC150, 
CCDC18, CCDC34, CHORDC1, DDX6, DIAPH3, 
DLEU2, EIF3J, EIF5, EXOSC3, FAM46A, FUBP1, FZD6, 
GNL2, HIBCH, HIRIP3, HMGB1, HMGN1, HSPH1, 
IDI1, IER2, IFI16, KPNA4, LEO1, LZIC, MITF, NAV2, 
PHAX, PHF19, PPID, PRDX3, PSPC1, PTGES3, RBBP6, 
RLF, RPL39L, SCLT1, SEC62, SUB1, SYTL2, TAF13, 
TFAM, TRMT10B, TWISTNB, UBALD2, UGDH, WDR1
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Table 1  (continued)

Community # of genes Category Gene names

B 213 Cell cycle G1/S, DNA replication ARL6IP6, ASF1B, ATAD2, ATAD5, BAZ1B, BLM, 
BRCA1, BRCA2, BRIP1, CASP8AP2, CCNE2, 
CDC16, CDC45, CDC6, CDCA5, CDCA7, CDK1, 
CENPQ, CHAF1A, CHAF1B, CHEK1, CLSPN, 
DDX11, DEK, DHFR, DNA2, DNMT1, DSCC1, 
DTL, DUT, E2F7, E2F8, EME1, ESCO2, EXO1, 
EZH2, FAM111A, FBXO5, FEN1, GEN1, GINS1, 
GINS2, GINS4, GMNN, HELLS, HIST1H4C, ICMT, 
KIAA0101, LIG1, MASTL, MCM10, MCM2, MCM3, 
MCM4, MCM5, MCM6, MCM7, MCM8, MGME1, 
MSH2, MSH6, NASP, ORC1, ORC6, PCNA, 
PKMYT1, POLA1, POLD3, POLE3, POLQ, PRIM1, 
PRKDC, RAD18, RAD51, RAD51C, RBBP4, RBBP7, 
RBBP8, RBL1, RECQL, RFC1, RFC2, RFC3, RFC4, 
RFC5, RMI1, RNASEH2A, RPA2, RPA3, RRM1, SLBP, 
SMC1A, SMC2, SUPT16H, SVIP, TIMELESS, TIPIN, 
TK1, TMPO, TOPBP1, TYMS, UNG, USP1, USP37, 
WDHD1, WDR76, XRCC2, YEATS4, ZGRF1

Cell cycle, other CALM2, CCDC14, CDK11B, CENPH, CENPJ, 
CENPK, CENPM, CENPU, CEP152, CMC2, CSE1L, 
DNAJC9, DSN1, ERCC6L, EXOSC8, FBXO43, 
HAUS1, HAUS8, HPS4, ITGB3BP, KLHL23, KNTC1, 
LMNB1, MELK, MIS18A, MND1, MYBL1, NCAPD3, 
NCAPG2, NCAPH, NUP107, NUP85, PAICS, 
PSMC3IP, RANBP1, RTKN2, SPC25, SRSF10, STIL, 
SYNE2, TRIM37, TUBG1, VRK1

DNA repair ANKRD32, CDC5L, FANCB, FANCI, FANCL, FIGNL1, 
FUS, KIF22, MBD4, NUDT21, PARP2, PMS1, 
RAD51AP1, RAD54B, RIF1, SMCHD1, TTF2, UBE2T, 
USP10, XRCC5, ZWINT

Histones HIST1H1D, HIST1H1E

Not accounted for (38/213) = 18% ACAA2, BAZ2B, BTG3, C19orf48, C21orf58, C3orf14, 
CBX5, CCDC15, CDCA4, CTDSPL2, CTNNAL1, DERA, 
FAM161A, FKBP5, GGCT, GGH, HMOX1, HNRNPAB, 
HSPB11, LGALS1, LSM8, MTHFD1, NAP1L4, POLR3K, 
POP7, PPM1G, PSIP1, PTPRG-AS1, RRM2, SDHA, 
SIVA1, SKA3, SLC43A3, SNRNP25, SRSF2, TEX30, 
TMEM106C, WDR34



Page 19 of 43Silkwood et al. BMC Bioinformatics          (2024) 25:305 	

Table 1  (continued)

Community # of genes Category Gene names

C 194 Unfolded protein response, ER 
stress

ASNS, ATF4, ATF6, ATP2A2, C19orf10, CALR, 
CANX, CAV1, CREB3L2, CRELD1, CRELD2, DDIT3, 
DDIT4, DNAJB11, DNAJB9, DNAJC10, DNAJC3, 
EIF4EBP1, ERP44, FAM129A, GFPT1, GLRX2, HER-
PUD1, HM13, HSP90B1, HSPA13, HSPA5, HSPA9, 
HYOU1, KDELR3, LMAN1, MANF, MTHFD2, NARS, 
NUPR1, OS9, P4HB, PDIA3, PDIA4, PDIA6, PPIB, 
PPP1R15A, PSAT1, RCN3, SDF2L1, SEC31A, SEL1L, 
SERP1, SESN2, SIL1, SPCS3, SRPR, SSR1, STT3B, 
TARS, TMCO1, TMED2, TRIB3, TXNIP, UGGT1, 
VEGFA, VIMP, WARS, WIPI1, XBP1, XPOT

Other endoplasmic reticulum ARF1, ARF4, ARFGAP3, ASPH, CALU, CLCN3, 
COPA, COPB1, COPB2, DDOST, FKBP2, GOLGA4, 
KDELR1, KDELR2, LAMB1, MAGT1, MIA3, MLEC, 
MTDH, NFE2L1, NUCB2, OSTC, PLOD3, PRNP, 
RCN1, RHOBTB3, RPN1, RPN2, RRBP1, SEC11C, 
SEC24D, SEC63, SLC35B1, SLC7A11, SMIM14, 
SPCS2, SSR2, SSR3, SUCO, TMED10, TMED9, 
TMF1, TRAM1

tRNAs AARS, EPRS, GARS, LARS, MARS, SARS, YARS

Metal ion transport and homeo-
stasis

ANXA2, ARHGEF2, ATP1A1, BEST1, CYB561, 
EDNRB, PDE4B, PEG10, SERPINE2, SHMT2, 
SLC39A14, SLC3A2, SLC5A3, TCEA1, TES

Not accounted for (63/194) = 32% ACBD3, ALDH1L2, ANKRD11, ATP6V1F, BCAT1, 
BTG1, BUD31, C11orf24, C6orf48, CDH19, 
CDK2AP2, CITED1, CTC-425F1.4, DDR2, DUSP6, 
EIF1, FAM114A1, FBXO25, GADD45A, GAS5, GAS7, 
GDF15, GHITM, GOT1, GPNMB, HDLBP, IFRD1, 
IL1RAP, ITGA4, LARP1B, LIMA1, LMO4, LRIF1, 
LURAP1L-AS1, MAP4, MBNL2, MCF2L, MESDC2, 
MORF4L2, NRSN2-AS1, PHGDH, PHLDA1, PMP22, 
PPAPDC1B, PSAP, PYCR1, PYGB, RCAN1, S100A11, 
SELK, SEP15, SLC1A5, SLFN5, SORBS2, SPARC, 
SUPV3L1, TAX1BP1, TMEM263, TMX4, WDR26, 
ZEB2, ZFAS1, ZNF106
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Table 1  (continued)

Community # of genes Category Gene names

D 158 Ribosomal proteins FAU, RPL10, RPL10A, RPL11, RPL12, RPL13, 
RPL13A, RPL14, RPL15, RPL18, RPL18A, RPL19, 
RPL22, RPL23, RPL23A, RPL24, RPL26, RPL27, 
RPL27A, RPL28, RPL29, RPL3, RPL30, RPL31, 
RPL32, RPL34, RPL35, RPL35A, RPL36, RPL36AL, 
RPL37, RPL37A, RPL38, RPL39, RPL4, RPL5, RPL6, 
RPL7A, RPL8, RPL9, RPLP0, RPLP1, RPLP2, RPS10, 
RPS11, RPS12, RPS13, RPS14, RPS15, RPS15A, 
RPS16, RPS17, RPS18, RPS19, RPS2, RPS20, RPS21, 
RPS23, RPS24, RPS25, RPS27, RPS27A, RPS28, 
RPS29, RPS3, RPS3A, RPS4X, RPS5, RPS6, RPS7, 
RPS8, RPS9, RPSA, UBA52

Protein translation EEF1A1, EEF1B2, EEF1D, EEF2, EIF3E, EIF3F, EIF3H, 
EIF3K, NACA, NACA2, PABPC1, PRKCSH, SEC11A, 
SSR4

Ribosome biogenesis GLTSCR2, NHP2

Iron metabolism FTH1, FTL

Not accounted for (66/158) = 42% ABHD14B, APP, ARL2, ATP5G2, C14orf2, C4orf48, 
C7orf55, CCDC86, CCDC88C, CD109, CEP350, 
COMMD6, COX5B, COX7A2L, CST3, CUEDC2, 
DCBLD2, ETV5, FBXO32, FIBP, HIF1A, HLTF, IFITM3, 
IMPDH2, ITSN2, LRRC75A, LRRC75A-AS1, METTL12, 
MIA, MME, MT-ND6, NAA38, NAP1L1, NDUFB7, 
NDUFS4, NIN, OAZ1, OST4, PABPC3, PGLS, PPFIA1, 
PRDX5, PRSS23, RB1CC1, ROMO1, RP11-193E15.4, 
RP11-356J5.12, RP11-669N7.2, SAT2, SERF2, SF3B6, 
SH3KBP1, SNHG19, SNHG5, SNHG6, SUCLG2, 
TOMM7, TPT1, TSPO, UBL5, UQCRB, UQCRH, 
UQCRHL, VPS28, WNK1

E 120 Cellular respiration ACAT1, ATP5B, ATP5G1, ATP5G3, ATP5J, ATP5J2, 
ATP5L, ATP5O, BNIP3, BNIP3L, C17orf89, C1QBP, 
CHCHD2, COX17, COX5A, COX6B1, COX6C, 
COX7C, COX8A, CYCS, HMBS, LGALS3, MMADHC, 
MRPL11, MRPL12, MRPL21, MRPL41, MRPS16, 
NDUFA2, NDUFA4, NDUFA8, NDUFB3, NDUFB4, 
NDUFB9, NDUFC1, NDUFC2, NDUFS5, NDUFS6, 
NPM1, PARK7, PFDN2, PFN1, PHB, PHB2, PSMB4, 
SDHB, SLC25A3, SLC25A36, SLC25A39, SLIRP, 
TIMM13, TRAP1, UQCR10, UQCRQ, VDAC1

Glycolysis ALDOA, ANKZF1, CD44, ENO2, FAM162A, 
GAPDH, LDHA, ME1, MIF, P4HA1, PGK1, PKM, 
PPIA, SLC2A3, TPI1, TXN

Hypoxia, oxidative stress ADM, ARHGDIA, ATXN2L, C20orf27, EIF5A, GBE1, 
GLO1, HINT1, HSPB1, ITGAE, KDM3A, NME1, 
NRN1, POLR2L, PSMA4, PSMB2, PSMB6, S100A10, 
STRA13, TAF1D, TNS1, TRIB2, VIM

Splicing SNRPD2, SNRPF, THOC7, YBX1

Endopeptidase inhibition CST1, CST4, CSTB

Not accounted for (18/120) = 15% APRT, BTF3, C12orf57, CCL28, CFL1, DARS, EIF4A1, 
EIF4A2, H1F0, HPCAL1, LMAN2, RP11-58E21.4, 
SDF4, SLAMF9, TMED4, TRAPPC1, TXNDC17, USP11
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Table 1  (continued)

Community # of genes Category Gene names

F 110 Pigmentation, melanosome APOE, ASAH1, ATOX1, B2M, BIRC7, CALM1, 
CAPG, CD320, CD63, CDK2, CLEC11A, CTSA, 
CTSB, CTSD, CTSH, DAB2, EMP1, ERP29, GNPTAB, 
GPR56, GRN, GSTO1, GUSB, GYPC, HMCN1, 
IDH1, MFGE8, MLANA, MLPH, MRPL44, MZT2B, 
NDUFB1, NGFRAP1, NPAS2, NPC2, NUMA1, 
PMEL, PRDX1, PRDX4, PSMA7, RAB27A, RAB38, 
RAI14, RLBP1, SDCBP, SLC24A5, TMEM98, TYR, 
UBR5, WSB1

Myeloid phenotypes (monocyte, 
macrophage, basophil, dendritic 
cell)

ACOT7, AKR1A1, ARPC1B, ATP6AP1, ATP6V0E1, 
BHLHE41, BTN2A2, C21orf91, CD59, CD9, 
CHCHD6, CPM, DBI, HEXB, HIPK2, ITM2C, 
LGALS3BP, LITAF, LRPAP1, MDH1, METTL9, 
NDUFB6, PEBP1, QPCT, RGS10, SPAG9, SUMO2, 
TIMP1, TMEM147, TMSB4X, TOP1, TRIM63

Not accounted for (28/110) = 25% AC104655.3, AFG3L2, BCAR3, CAPN3, CFAP61, 
COL4A3BP, CYTL1, G3BP1, G3BP2, GJB1, HTATSF1, 
KIAA1456, LHFPL3-AS1, LONRF1, MAGED1, MAGI1, 
MPG, PCCB, PDE3B, PLCH1-AS1, PMP2, POLR2F, 
RNF19A, RP4-718J7.4, SCML4, SEPT6, STK32A, 
TIMM50

G 70 HNRNPs HNRNPA2B1, HNRNPA3, HNRNPH3, HNRNPK, 
HNRNPM, HNRNPR, HNRNPU

Other RNA processing DDX1, DDX21, DNTTIP2, EIF4A3, EIF4G1, ESF1, 
LUC7L3, MYH10, NCL, NOLC1, NOP56, NOP58, 
NSUN2, NUDT1, PA2G4, PNO1, PNPT1, PRPF40A, 
PUS7, SET, SNRPC, SNRPE, SNRPG, SSB, SYNCRIP, 
TPRKB, TSR1, WDR3

Other RNA binding proteins BZW1, CNBP, EIF3A, EIF3B, GSPT1, LARP4, SERBP1

Protein chaperones DNAJC2, DNAJC8, CCT4, CCT5, CCT6A, 
HSP90AB1, HSPD1, HSPE1, NUDCD1, STIP1, TCP1

Not accounted for (17/70) = 24% ARPC2, ATP6V1C1, CEBPZ, GPATCH4, KDM5A, 
KIAA0020, MACF1, MRPL19, NOM1, PSMD14, 
PSME4, PTMA, TLN1, TPM3, UTP11L, YWHAQ, 
ZC3H15

H 59 Mitochondrially-encoded genes MT-ATP6, MT-ATP8, MT-CO1, MT-CO2, MT-CO3, 
MT-CYB, MT-ND1, MT-ND2, MT-ND3, MT-ND4, 
MT-ND4L, MT-ND5, MT-RNR1, MT-RNR2, MT-TF, 
MT-TL1, MT-TP, MT-TS2, MT-TT, MT-TV

Regulation of expression of 
mitochondrially-encoded genes

LRPPRC

Protein ubiquitination CBLB, DDX3X, DZIP3, HECTD1, MYCBP2, NBR1, 
TBL1XR1

Hypoxia/stress response CALD1, DST, FOS, IGF1R, IGFBP5, JUNB, MXI1, 
ZMYND8

Not accounted for (20/59) = 34% AC021451.1, ADCY1, AKAP9, BPTF, CAPN2, COX6A1, 
CSDE1, DDX17, FCHSD2, GOLGB1, KRIT1, MEF2A, 
PCLO, PLCB4, PPP1R9A, SPEN, SRRM2, TDRD3, TIA1, 
ZBTB38, ZC3H13, ZKSCAN1, ZNF704

I 45 S100 proteins S100A1, S100A13, S100A4, S100A6

Endosome function ARFIP1, INPP5F, PIK3C3

Lipoprotein metabolism APOC1, APOD

Not accounted for (36/45) = 80% ATP6V0B, ATPIF1, BHLHE40, CDKN2A, CKLF, COPS6, 
CTHRC1, FRMD4A, FXYD3, HOXB2, MGST3, 
MRPS21, MT2A, NDUFA5, NFKBIZ, PAXIP1-AS1, 
PLEKHA4, PTPRE, RABAC1, RAMP1, RPS27L, 
SEMA3B, SH3BGRL3, SLC20A1, STRIP2, TDRKH, 
TM4SF1, TMEM258, TMSB10, TNFRSF12A, TPD52L1, 
TSC22D1, TUBA1A, USP53, VGF, ZNHIT1
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communities (accounting for 1217 of the 1291 genes), over 50% of the genes could be 
associated with just one or a few functional annotations (Table 1).

For example, communities A and B consist primarily of genes related to the cell cycle, 
with more than 62% of the genes in community A known to be preferentially associated 
with the G2 and M phases of the cell cycle. About 71% of community B is associated 
with the cell cycle, the majority of these being associated with G1 and S phase. These 
communities were also correlated with each other, but the community-finding algorithm 
easily subdivided them.

Most other communities are at best weakly correlated with either of the cell-cycle 
communities. In community C, 34% of genes encode proteins involved in the unfolded 
protein response and/or endoplasmic reticulum (ER) stress, and other ER proteins 
account for another 22% of genes. ER stress is commonly observed in cancer, and the 
unfolded protein response is specifically and strongly activated in melanoma cells 
[59–61].

Community D contains almost all genes encoding protein components of cytoplasmic 
ribosomes, plus a large set of genes that regulate ribosome biogenesis or function. Over-
all, ribosome-related genes make up 57% of this community. Community E combines 
genes involved in cellular respiration, glycolysis, and oxidative and hypoxic stress, which 
collectively account for 78% of this community.

Fifty genes in community F, nearly half the total, are associated with melanin synthe-
sis and melanosome biogenesis, and include traditional melanocyte markers such as 
MLANA, PMEL, RAB27A and TYR​. Another subset in community F, consisting of 32 
genes, shares annotations related to markers of myeloid cell types (monocytes, mac-
rophages, basophils, etc.) but largely consists of ubiquitously expressed genes involved 

Table 1  (continued)

Community # of genes Category Gene names

J 29 Hypoxia AKAP12, KLHL24, RND3, SAMD4A, SAT1

Golgi and lysosome EXOC1, GOLGA8B, LRRK2, PRELP, RAB30, SMPD1, 
SPG11

Not accounted for (17/29) = 59% ARID5B, BCL2L11, CPQ, CRYL1, CSAG1, EYA3, 
HIST1H1C, INTU, KDM1B, LPP, RAB17, RP11-
258C19.7, SH3BGRL, STARD13, TRIQK, UPF2, 
ZNF451

K 20 Cholesterol, sterol biosynthesis ACSS2, C14orf1, CYP51A1, DHCR24, DHCR7, EBP, 
FDFT1, FDPS, HMGCR, HMGCS1, INSIG1, LDLR, 
MSMO1, SC5D, SCD, SQLE, STARD4, TMEM97, 
LPIN1

Not accounted for (1/20) = 5% PRRX1

L 12 Interferon response CEACAM1, HERC5, IFI44, IFIH1, IFIT2, IFIT3, ISG15, 
PMAIP1

Not accounted for (4/12) = 33% KIN, MRPL55, P2RX7, PPM1K

M 7 Regulation of growth factor 
signaling

FAM98B, LEMD3, PTPN1

RNA splicing SAP18

Not accounted for (3/7) = 43% GALNT2, MRPL57, SLC2A11

Communities containing at least 7 genes are shown. Genes were assigned to annotations after manually exploring overlaps 
with all MSigDB datasets (category labels used here often reflect the merger of redundant or semi-redundant gene sets). 
Genes marked “Not accounted for” failed to overlap significantly with known gene sets (i.e., overlaps involved at most two 
genes, or accounted for less than 1% of genes in the dataset)
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Table 2  Mitochondrially-encoded and ribosomal protein gene communities identified following 
unsupervised clustering of each of the four cell clusters, 1.1, 1.2, 2 and 3

Cell cluster Community Number 
of genes

Gene names

1.1 Mitochondrially-
encoded

110 AKAP9, ANKRD37, ARGLU1, ATP1A1, BHLHE40, C21orf58, CD109, 
CDK5RAP3, CIR1, COPB1, CTSC, DDIT4, DDX17, DDX5, DMTF1, 
DNAJB1, DST, EIF2A, EIF3D, EIF4A2, EIF4G1, EMP1, EPRS, EWSR1, 
FAM168A, FNBP4, FUS, GAS5, GOLGA8B, GPNMB, GRN, HERC5, 
HSP90AB1, HSPA9, HSPD1, IFIT1, IFIT2, IFIT3, IGF2R, ING2, IRF1, ISG15, 
IVNS1ABP, LAMB1, LGALS3BP, LYST, MACF1, MAN2C1, MCM6, MT-
ATP6, MT-ATP8, MT-CO1, MT-CO2, MT-CO3, MT-CYB, MT-ND1, 
MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-ND6, MT-
RNR1, MT-TD, MT-TF, MT-TL1, MT-TP, MT-TS2, MT-TV, MXI1, MYC, 
MYO10, NCOA3, NDUFB9, P4HA1, P4HB, PABPC1L, PDIA3, PDIA6, 
PMAIP1, PMEL, PNISR, PON2, PPFIA1, PRKDC, PSAP, PTPRM, RAS-
GRP3, RGS1, RRBP1, SAT1, SEC31A, SERINC1, SF3B1, SLC1A3, SLC2A3, 
SLC35F6, SLC3A2, SNHG12, SORBS2, SPEN, SPTBN1, SRRM2, TAF1D, 
TLN1, TSR1, TYR, UBR5, VIM, ZFAS1

1.2 Mitochondrially-
encoded

59 AC021451.1, ADCY1, AKAP9, BPTF, CALD1, CAPN2, CBLB, COX6A1, 
CSDE1, DDX17, DDX3X, DST, DZIP3, FCHSD2, FOS, GOLGB1, HECTD1, 
IGF1R, IGFBP5, JUNB, KRIT1, LRPPRC, MEF2A, MT-ATP6, MT-ATP8, 
MT-CO1, MT-CO2, MT-CO3, MT-CYB, MT-ND1, MT-ND2, MT-ND3, 
MT-ND4, MT-ND4L, MT-ND5, MT-RNR1, MT-RNR2, MT-TF, MT-TL1, 
MT-TP, MT-TS2, MT-TT, MT-TV, MXI1, MYCBP2, NBR1, PCLO, PLCB4, 
PPP1R9A, SPEN, SRRM2, TBL1XR1, TDRD3, TIA1, ZBTB38, ZC3H13, 
ZKSCAN1, ZMYND8, ZNF704

2 Mitochondrially-
encoded

50 APOD, APP, ATP6AP1, BSG, CD109, COX6A1, CPVL, CTSA, CTSD, CTSK, 
GPNMB, GRN, GUSB, IGSF8, LGALS3BP, LRPAP1, MAGED2, MCUR1, 
MGST3, MT-ATP6, MT-ATP8, MT-CO1, MT-CO2, MT-CO3, MT-
CYB, MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-RNR1, 
MT-RNR2, MT-TF, MT-TL1, MT-TP, MT-TS2, MT-TT, MT-TV, NCSTN, 
NDUFB9, P4HB, PCNXL2, PLAT, PLTP, PMEL, PSAP, RPN2, SPARC, SRPX, 
TYR​

3 Mitochondrially-
encoded

15 COX6A1, GPNMB, MT-ATP6, MT-ATP8, MT-CO2, MT-CO3, MT-CYB, 
MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, MT-TL1, 
PMEL

1.1 Ribosomal 
protein genes

48 FTH1, RPL10, RPL11, RPL12, RPL13, RPL13A, RPL18, RPL19, 
RPL24, RPL26, RPL27, RPL27A, RPL28, RPL30, RPL31, RPL34, 
RPL35, RPL37, RPL37A, RPL38, RPL8, RPLP0, RPLP1, RPLP2, 
RPS11, RPS12, RPS13, RPS14, RPS15, RPS15A, RPS16, RPS17, 
RPS18, RPS19, RPS2, RPS20, RPS21, RPS23, RPS27, RPS27A, 
RPS29, RPS3, RPS5, RPS6, RPS8, SNHG5, TPT1, UBA52

1.2 Ribosomal 
protein genes

158 ABHD14B, APP, ARL2, ATP5G2, C14orf2, C4orf48, C7orf55, CCDC86, 
CCDC88C, CD109, CEP350, COMMD6, COX5B, COX7A2L, CST3, 
CUEDC2, DCBLD2, EEF1A1, EEF1B2, EEF1D, EEF2, EIF3E, EIF3F, EIF3H, 
EIF3K, ETV5, FAU, FBXO32, FIBP, FTH1, FTL, GLTSCR2, GNB2L1, HIF1A, 
HLTF, IFITM3, IMPDH2, ITSN2, LRRC75A, LRRC75A-AS1, METTL12, MIA, 
MME, MT-ND6, NAA38, NACA, NACA2, NAP1L1, NDUFB7, NDUFS4, 
NHP2, NIN, OAZ1, OST4, PABPC1, PABPC3, PGLS, PPFIA1, PRDX5, 
PRKCSH, PRSS23, RB1CC1, ROMO1, RP11-193E15.4, RP11-356J5.12, 
RP11-669N7.2, RPL10, RPL10A, RPL11, RPL12, RPL13, RPL13A, 
RPL14, RPL15, RPL18, RPL18A, RPL19, RPL22, RPL23, RPL23A, 
RPL24, RPL26, RPL27, RPL27A, RPL28, RPL29, RPL3, RPL30, 
RPL31, RPL32, RPL34, RPL35, RPL35A, RPL36, RPL36AL, RPL37, 
RPL37A, RPL38, RPL39, RPL4, RPL5, RPL6, RPL7A, RPL8, RPL9, 
RPLP0, RPLP1, RPLP2, RPS10, RPS11, RPS12, RPS13, RPS14, 
RPS15, RPS15A, RPS16, RPS17, RPS18, RPS19, RPS2, RPS20, 
RPS21, RPS23, RPS24, RPS25, RPS27, RPS27A, RPS28, RPS29, 
RPS3, RPS3A, RPS4X, RPS5, RPS6, RPS7, RPS8, RPS9, RPSA, SAT2, 
SEC11A, SERF2, SF3B6, SH3KBP1, SNHG19, SNHG5, SNHG6, SSR4, 
SUCLG2, TOMM7, TPT1, TSPO, UBA52, UBL5, UQCRB, UQCRH, UQCRHL, 
VPS28, WNK1
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Mitochondrially-encoded and ribosomal protein genes are highlighted in bold

Table 2  (continued)

Cell cluster Community Number 
of genes

Gene names

2 Ribosomal 
protein genes

440 ACTB, ACTG1, AKR1B1, ALDOA, ANAPC13, ANP32A, ANP32B, ANXA5, 
AP2S1, APOA1BP, APRT, ARL6IP5, ARPC1A, ARPC1B, ARPC2, ARPC3, 
ATOX1, ATP5B, ATP5E, ATP5EP2, ATP5F1, ATP5G1, ATP5G2, ATP5G3, 
ATP5I, ATP5J, ATP5J2, ATP5L, ATP5O, ATP6V0B, ATP6V1F, ATP6V1G1, 
ATPIF1, BCAS3, BCCIP, BOLA3, BTF3, BUD31, C11orf31, C12orf57, 
C14orf2, C17orf89, C19orf10, C19orf53, C1QBP, C20orf27, C8orf33, 
CACYBP, CALM1, CALM2, CAPG, CAPZB, CBX1, CBX3, CCNI, CCT7, 
CD59, CD63, CDC42, CDKN2A, CETN2, CFL1, CHCHD2, CHCHD6, 
CHCHD7, CHMP2A, CHMP4B, CKS2, CNBP, CNIH1, COA4, COX14, 
COX17, COX4I1, COX5A, COX5B, COX6B1, COX6C, COX7A2, COX7B, 
COX7C, COX8A, CST3, CSTB, CTHRC1, CTSH, CWC15, CYC1, CYCS, 
CYTL1, DBI, DDOST, DGUOK, DNAJB1, DNAJC8, DRG1, DSTN, DTD1, 
DUT, DYNLL1, DYNLRB1, ECHS1, EDF1, EEF1A1, EEF1B2, EEF1D, EIF1, 
EIF2S2, EIF3H, EIF3I, EIF4EBP1, EIF5A, EMC4, ENO1, ENY2, ERH, ESD, 
FAU, FBL, FIS1, FKBP1A, FKBP2, FTH1, FTL, FXYD5, GADD45GIP1, 
GAPDH, GHITM, GLO1, GMNN, GNAS, GNB2L1, GNG12, GPX1, GPX4, 
GSTO1, GSTP1, GUK1, GYPC, H2AFZ, H3F3B, HDDC2, HINT1, HIST1H4C, 
HMGB1, HMGN2, HNRNPC, HSBP1, HSPB1, HSPE1, INSIG1, ITGB1BP1, 
LAGE3, LAMTOR1, LAMTOR4, LAMTOR5, LAPTM4B, LDHA, LDHB, 
LGALS1, LGALS3, LINC00998, LRRC75A, LRRC75A-AS1, LSM4, LSM7, 
METTL9, MIA, MIF, MKKS, MLANA, MMADHC, MRPL12, MRPL13, 
MRPL21, MRPL33, MRPL48, MRPL51, MRPL57, MRPS33, MRPS34, 
MRPS6, MT2A, MTPN, MYEOV2, MYL6, MZT2B, NAA38, NACA, NAP1L1, 
NDUFA1, NDUFA12, NDUFA13, NDUFA4, NDUFA5, NDUFA8, NDU-
FAB1, NDUFB1, NDUFB10, NDUFB11, NDUFB2, NDUFB3, NDUFB4, 
NDUFC1, NDUFC2, NDUFS5, NDUFS6, NEDD8, NGFRAP1, NHP2, 
NHP2L1, NME1, NME4, NOL7, NPC2, NPM1, NSA2, NUDT1, NUTF2, 
OAZ1, OLA1, OST4, OSTC, PA2G4, PABPC1, PABPC3, PARK7, PDAP1, 
PDCD5, PEBP1, PFDN2, PFDN4, PFDN5, PFN1, PHB, PHB2, PKM, PMP22, 
POLR2F, POLR2J, POLR2L, POMP, PPDPF, PPIA, PPIB, PPT1, PRDX1, 
PRDX5, PRDX6, PRELID1, PSMA5, PSMA7, PSMB4, PSMB6, PSMB7, 
PSME1, PSMG1, PTMA, PTTG1IP, PYURF, RAB2A, RAB38, RAB7A, RAN, 
RBX1, REXO2, RGS10, RHOA, ROMO1, RP11-669N7.2, RP11-831H9.11, 
RPL10, RPL10A, RPL11, RPL12, RPL13, RPL13A, RPL14, RPL15, 
RPL18, RPL19, RPL22, RPL23, RPL23A, RPL24, RPL26, RPL27, 
RPL27A, RPL28, RPL29, RPL3, RPL30, RPL31, RPL32, RPL34, 
RPL35, RPL35A, RPL36, RPL36AL, RPL37, RPL37A, RPL38, RPL39, 
RPL4, RPL5, RPL6, RPL7A, RPL8, RPL9, RPLP0, RPLP1, RPLP2, 
RPS10, RPS11, RPS12, RPS13, RPS14, RPS15, RPS15A, RPS16, 
RPS17, RPS18, RPS19, RPS19BP1, RPS2, RPS20, RPS21, RPS23, 
RPS24, RPS25, RPS27, RPS27A, RPS27L, RPS28, RPS29, RPS3, 
RPS4X, RPS5, RPS6, RPS7, RPS8, RPS9, RPSA, RSL1D1, RSL24D1, 
RTFDC1, S100A1, S100A10, S100A11, S100A13, S100A6, S100B, 
SCAND1, SEC11A, SEC61G, SEP15, SERF2, SERP1, SET, SF3B6, SH3BGRL, 
SH3BGRL3, SHFM1, SKP1, SLC25A3, SLC25A5, SLIRP, SLMO2, SMS, 
SNHG5, SNHG6, SNHG8, SNRPC, SNRPD1, SNRPD2, SNRPD3, SNRPE, 
SNRPF, SNRPG, SOD1, SPCS1, SRP14, SRP72, SRSF3, SSBP1, SSR3, SSR4, 
ST13, STMN1, SUB1, SUMO2, SUMO3, TBCA, TCEA1, TCEAL8, TCEB1, 
TCEB2, THOC7, TIMP1, TMA7, TMBIM6, TMED2, TMEM14A, TMEM14B, 
TMEM14C, TMSB10, TMSB4X, TOMM20, TOMM6, TOMM7, TPD52, TPI1, 
TPT1, TRAPPC1, TSPAN3, TUBA1B, TXN, TXN2, TXNDC17, UBA52, UBB, 
UBE2L3, UBE2N, UBL5, UBXN1, UQCC2, UQCR10, UQCRB, UQCRH, 
UQCRQ, USMG5, UTP11L, UXT, VDAC1, VIM, YBX1, YWHAE, YWHAZ, 
ZNF706, ZNHIT1

3 Ribosomal 
protein genes

63 ACTG1, ATOX1, CD63, CHCHD2, COX7C, FAU, FTH1, FTL, H2AFZ, 
HSPE1, LGALS3, MLANA, PRDX1, PSMA7, RPL10, RPL11, RPL12, 
RPL13, RPL13A, RPL15, RPL18, RPL19, RPL23, RPL24, RPL26, 
RPL27, RPL27A, RPL28, RPL31, RPL32, RPL34, RPL35, RPL35A, 
RPL37, RPL37A, RPL38, RPL5, RPL8, RPLP0, RPLP2, RPS11, 
RPS12, RPS13, RPS14, RPS15, RPS15A, RPS18, RPS2, RPS20, 
RPS23, RPS24, RPS25, RPS27A, RPS29, RPS3, RPS4X, RPS6, RPS8, 
TMSB10, TPI1, TPT1, UBA52, UQCRB
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in processes such as lipid biosynthesis. At least one of these genes, TRIM63, is known 
to be strongly associated with melanoma [62], and is a validated target of MITF [63], the 
primary transcription factor controlling expression of pigmentation genes.

Community G contains multiple genes involved in RNA processing, including seven 
genes encoding members of the ubiquitously expressed heterogeneous nuclear ribo-
nucleoprotein (HNRNP) family, as well as genes encoding protein chaperones of the 
HSP10, HSP40 HSP60, HSP90, and CCT families. Community H contains most of the 
mitochondrially-encoded genes, as well as genes involved in protein ubiquitination and 
the hypoxia stress response.

Community I combines four genes encoding S100-family calcium binding proteins, as 
well as various genes associated with endosome function and lipoprotein metabolism. 
Unlike other communities, in this community most genes do not fall into large groups 
with traditional annotations. However, many of them are genes known to be strongly 
associated with melanoma. These include APOC1, APOD, CDKN2A, CTHRC1, FXYD3, 
INPP5F, MT2A, S100A4, SEMA3B, TMSB10 and VGF [64–67], suggesting this commu-
nity is detecting genes co-regulated by drivers of a melanoma-specific cell state.

Community J combines genes associated with the response to hypoxia with genes 
involved in Golgi body and lysosome function. Nearly all the genes in community K are 
associated with cholesterol/sterol biosynthesis and homeostasis; the only exception is 
PRRX1, which serves as the transcriptional co-regulator of serum response factor. In oli-
godendrocytes at least, it has been shown that PRRX1 is necessary for the expression of 
cholesterol biosynthesis genes [68].

Community L consists mainly of genes annotated as related to interferon signaling; 
these genes are also the primary drivers of the cellular anti-viral response. Finally, com-
munity M contains several genes associated with growth factor signaling.

Figures S4–S7 (Additional files 6, 7, 8, 9) display the gene–gene linkages within these 
communities graphically. Here, genes are shown as light blue disks, except for transcrip-
tion factors which appear as yellow squares. The areas of the disks and squares are pro-
portional to the relative mean expression of the genes (absolute scaling differs between 
panels, as it was adjusted to enhance the readability of each figure). Green lines denote 
significant positive correlations (no negative correlations were observed within any of 
the communities shown). In several cases, a smaller version of each graph, in which links 
supported by protein–protein interaction data have been overlayed with brown lines, 
is displayed as an inset; for some communities, only the graphs containing these high-
lights are shown. Examination of Figs. S4–S7 shows that genes associated with a single 
functional annotation, or that encode directly-interacting proteins, are often especially 
densely interconnected, causing them to cluster together (e.g., genes encoding directly 
physically interacting proteins in A and B, unfolded protein response genes in C, riboso-
mal subunit genes in D, glycolysis genes in E, S100 genes in I, etc.).

Whereas the clustering of genes into communities had been carried out based on posi-
tive gene–gene correlations, plotting pairs of communities together enabled the evalu-
ation of negative correlations between them, the vast majority of which involved the 
mitochondrially-encoded genes which, as mentioned previously, strongly anti-correlated 
with ribosomal protein genes (Fig.  5). Mitochondrial genes also anti-correlated with 
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some of the genes in communities A, F, E and G; for example, anticorrelations between 
mitochondrial genes and genes encoding glycolytic enzymes are shown in Fig. 5E.

Figure 5 and Table 2 also document that the anti-correlation between mitochondrial 
and ribosomal genes is as apparent in cell clusters 1.1, 2 and 3 as it is in cluster 1.2. This 
is interesting insofar as the features used to subdivide cells into these clusters included 
most of mitochondrially-encoded and ribosomal genes. What this suggests is that there 
are not two separable populations of cells overexpressing mitochondrial versus riboso-
mal genes. Instead, the data suggest that the observed anti-correlations are not them-
selves sufficiently correlated with each other to drive cell clustering. In other words, 
BigSur seems to able to detect local gene–gene relationships that could not have been 
identified by comparing differential expression of genes in any possible grouping of cells.

Estimating the accuracy of BigSur

The association of a small number of annotation categories with nearly all of the gene 
communities that BigSur found, in an unsupervised manner, in scRNAseq data strongly 
suggest that many of the correlations detected by BigSur are true positives. Nevertheless, 
in nearly all communities some genes did not fall into obvious categories (Table 1). Do 
these just reflect the incompleteness of existing annotations, or did BigSur produce false 
positive results beyond the ~ 2% expected from the FDR cutoff that was used?

Rarely in biology does one have ground truth information with which to settle this 
question, but one can still perform informative tests. For example, one can consider a 
subset of the genes that form a functional category and ask whether BigSur correctly 
identifies other members of the category as being correlated with them. An example is 
shown in Fig.  6A, where we started with a 27-gene panel, the "Reactome Cholesterol 
Biosynthesis” gene set from MSigDB (ACAT2, ARV1, CYP51A1, DHCR24, DHCR7, EBP, 
FDFT1, FDPS, GGPS1, HMGCR, HMGCS1, HSD17B7, IDI1, IDI2, LBR, LSS, MSMO1, 
MVD, MVK, NSDHL, PPAPDC2, PMVK, SC5D, SQLE, SREBF1, SREBF2, TM7SF2). That 
panel includes many, but not all, genes known to be involved in cholesterol metabolism. 
The graph displays all statistically significant positive correlations involving any of these 
genes that were detected in cell cluster 1.2 (members of the gene panel are indicated 
with large font, blue lettering).

All detected members of the gene set formed a single network, with many internal 
positive linkages. Closely connected to this network were eight additional genes (out-
lined in red) that are not part of the Reactome Cholesterol Biosynthesis set, but belong 
either to the “Hallmark” cholesterol homeostasis set from MSigDB (ACSS2, ACTG1, 
LDLR, SCD, STARD4, TMEM97); are designated as core cholesterol metabolism genes 
in recent literature (ACLY [69]; C14or1/ERG28 [70]); or encode sterol binding proteins 
that serve as feedback controllers of cholesterol biosynthesis (INSIG1 [71]). Highlighted 
in orange are two additional genes that regulate lipid biosynthesis more generally, LPIN1 
and PRRX1.

Four additional genes are highlighted in gray, as it is possible they are also related to 
cholesterol metabolism: AKR1A1, CALR, PRDX1, and PMEL. AKR1A1 encodes an 
enzyme of the aldo/keto reductase superfamily, which reduces a wide variety of car-
bonyl-containing compounds to their corresponding alcohols; its orthologues AKR1C1 
and AKR1D1 are well known to play a role in the metabolism of steroid hormones but 
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AKR1A1 is thought to act on non-steroid compounds (perhaps this assumption should 
be revisited). CALR, encodes calreticulin, a protein that promotes folding, oligomeric 
assembly and quality control in the endoplasmic reticulum. As cholesterol synthesis 
takes place in the ER membrane, it is perhaps not surprising that expression of CALR 
and cholesterol synthesis genes would be co-regulated. PRDX1 encodes peroxiredoxin, 
an antioxidant enzyme that reduces hydrogen peroxide and alkyl hydroperoxides and 
plays a key role in maintaining redox balance. In macrophages, PRDX1 has been shown 
to be critical for cholesterol efflux during autophagy [72]. PMEL encodes a major com-
ponent of the melanosome. Interestingly, it has been reported that cholesterol strongly 
stimulates melanogenesis in melanocytes and melanoma cells [73].

In addition to these genes, a set of tightly interconnected genes that have no known 
association with cholesterol metabolism is peripherally connected to this community 
(outlined by a dotted line in Fig. 6A). A large proportion of these genes encode proteins 

Fig. 6  Comparing the ability of BigSur and uncorrected PCCs to identify biologically significant correlations. 
Using the data from cell cluster 1.2, BigSur identified positive correlations and their p values for all genes, 
converting the p values to equivalent PCCs. In addition, the same starting data were also normalized 
and uncorrected PCCs obtained. A–D compare the correlations identified by the two methods. A Genes 
identified by BigSur as correlating with the Reactome Cholesterol Metabolism gene set. All significant gene–
gene correlations detected by BigSur involving genes in this 27-gene set (the names of which are shown at 
right) and all other genes in the genome are shown graphically. Genes belonging to the set are highlighted 
in blue; additional known cholesterol metabolism-related genes are highlighted with rectangles. Green 
lines show significant positive correlations. Dashing surrounds a group of cell cycle genes that correlate 
with the dual-function gene LBR. Expression levels (mean UMI per cell after normalization) for each of the 
genes in the set are shown at right; genes highlighted in yellow are those that displayed any significant 
correlations. B Correlation communities for the same gene set, panel identified using uncorrected PCCs, 
visualized as in panel (A). Note that the target genes are scattered among 5 disconnected communities and 
are connected with genes with no obvious relationship to cholesterol metabolism. C Positive correlations 
involving any of the genes belonging to the Reactome Cholesterol Metabolism gene set were divided 
into “within-community” links and “out-of-community” links. With BigSur (filled symbols), the ratio of 
within-community to out-of-community links is much higher than with uncorrected PCCs (open symbols), 
suggesting the latter produce much less enrichment for functionally relevant connections. D Analyses 
similar to that in panel C were performed for eight additional MSigDB “Hallmark” gene sets. Plotted are the 
proportions of correlations that are within-group over a range of PCC thresholds. Numbers of genes in each 
panel are shown in parentheses. E Analyses similar to that in panel (D) were performed with 150-gene sets 
chosen at random after first removing genes with mean expression below 0.052 (so that median expression 
for random genes was similar to that of the functional panel genes
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associated with the cell cycle, especially with functions associated with mitosis, such 
as mitotic checkpoint events, and cyto- and karyokinesis. Strongly connected to these 
mitotic genes is LBR, which encodes the Lamin B receptor. LBR is a multifunctional 
protein: it plays a key role in cholesterol biosynthesis, catalyzing the reduction of the 
C14-unsaturated bond of lanosterol, but also anchors the nuclear lamina and hetero-
chromatin to the inner nuclear membrane, and in so doing is strongly regulated by 
phosphorylation during the cell cycle [74]. A functional link between expression of cho-
lesterol biosynthesis genes and mitosis may arise from that fact that cholesterol synthesis 
normally rises dramatically during G1 phase and if prevented from doing so will result in 
G1 arrest [75]. It thus may make sense to upregulate the production of cholesterol bio-
synthetic genes as cells go into mitosis, so they are available to act in the G1 phase that 
immediately follows.

To the right of the graph in Fig. 6A the genes of the Reactome Cholesterol Biosynthe-
sis set are listed alongside their relative expression levels (UMI/cell after normalization) 
in this data set. Highlighted in yellow are those for which BigSur identified significant 
positive correlations, nearly all of which were toward the higher end of expression levels. 
These results illustrate an important limitation of any correlation methodology, which 
is that statistical power depends on the number of non-zero entries in the data, which 
will, in turn, reflect expression level, sequencing depth, and the number of cells ana-
lyzed. Examination of the raw data indicates that the point at which BigSur begins to 
fail to identify significant correlations occurred, for these genes, when the total number 
of non-zero entries (among 1582 cells) fell to about 320; this corresponded to a mean 
expression level of about 0.3 UMI/cell. For more strongly correlated genes one should 
of course expect fewer entries to be necessary to achieve significance, but based on the 
results here we suggest that, when seeking to identify the kinds of weak correlations 
associated with noise-coupled gene-regulatory networks, a minimum of several hundred 
non-zero entries per gene may be a reasonable threshold. In practice, one should be able 
to adjust the number of genes that fulfill this criterion either by varying the number of 
cells analyzed or varying the depth of sequencing (or both).

Figure  6B plots the results of the identical exercise as in Fig.  6A, carried out using 
uncorrected PCCs obtained directly from normalized gene expression data, rather than 
using PCC′ and BigSur. A threshold of PCC = 0.29 was selected so that the number of 
Reactome Cholesterol Biosynthesis genes that exhibited above-threshold correlations 
was the same as in Fig. 6A. In this case, however, the cholesterol biosynthesis genes did 
not form a single community, but rather separated into 5 disconnected groups. Most 
groups contained links to many genes, none of which appeared, on inspection, to bear 
any relationship to cholesterol metabolism. These data make the important point that 
most of the links detected using uncorrected PCCs are likely to be false positives.

One way to extend this analysis to other functional gene sets is suggested by the obser-
vation that, among the correlations in Fig. 6A involving Reactome Cholesterol Biosyn-
thesis genes, 25 occur between member genes (“within-community”) while 157 involve 
other genes (“out-of-community”). In contrast, in Fig. 6B there are 143 out-of-commu-
nity links and zero in-community ones. Figure 6C shows how the numbers of within-
community and out-of-community links change as the PCC significance threshold is 
changed, both for BigSur and uncorrected PCCs. These results suggest that the fraction 
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of all correlations that is in-community can be used as a measure of the specificity with 
which functionally relevant correlations are identified by any given method. In Fig. 6D, 
we used this approach to contrast the performance of BigSur (filled symbols) with uncor-
rected PCCs (open symbols) for 8 different gene sets, each of which contained between 
49 and 200 members. Using BigSur, the proportion of links that were in-community var-
ied between ~ 1% and 30% depending on the gene set, usually increasing as the equiva-
lent PCC threshold was made more stringent. Using uncorrected PCCs, the proportion 
of in-community links varied between 0.2% and 1% and did not change appreciably with 
PCC threshold. For comparison, Fig.  6E performs a similar analysis using 8 “random” 
gene sets—sets of 150 genes randomly selected from genes with similar overall expres-
sion to those in the gene sets used in Fig. 6D. The results suggest that the performance of 
BigSur on functionally related genes is far above chance level, while uncorrected PCCs 
perform at or around that level.

Induced changes in gene expression are associated with increased gene–gene correlation

If BigSur detects physiologically meaningful gene correlations, one might expect genes 
induced in response to specific perturbations to be correlated with each other. In other 
words, among genes that differ between treated and untreated conditions, one might 
also expect to observe groups of the same genes displaying correlations within each 
individual condition—presumably because they represent genes regulated by common 
upstream signals. To test this, we turned to a scRNAseq study in which differentiated 
human airway epithelial cells were treated with IL-13, a model of cytokine-induced 
asthma [76]. We focused on a single subset of cells, those labeled “defense secretory”, as 
similar numbers of them were captured in both treated and untreated conditions (see 
Methods).

Data from control and IL13-treated cells were then analyzed separately using BigSur 
(Fig. S8/Additional file 10). First, we focused on the 419 genes reported to be upregu-
lated by IL13 [76]. Within the treated group we found 313 of these genes were also cor-
related with each other in a single, large community (Fig. S8A). Interestingly, 45 of these 
genes were correlated in control cells as well (Fig. S8B), suggesting that a module of co-
regulated gene expression is already active prior to treatment.

Next, we asked whether BigSur could identify co-regulated genes that had not been 
picked up as differentially expressed (perhaps because their expression levels did not 
change sufficiently after treatment). We focused on genes that correlated with one 
particular gene, MUC16, which encodes an IL13-induceable mucin thought to play a 
prominent role in asthma-associated mucus obstruction of the airway [76]. We found 
168 genes to be significantly positively correlated with MUC16 in IL13-treated cells 
(Fig. S9/Additional file 11), only 23 of which were among those differentially expressed 
in response to IL13 [76]. Among the remaining 145 genes were found MUC4, another 
mucin gene; SYTL2, a paralog of SYT2, which encodes a limiting factor in mucin secre-
tion [77]; and THSD7B, which encodes a direct interactor of SYT2 and SYTL2.

Also among the genes that correlated with MUC16 in IL13-treated cells were 5 of 
11 genes previously identified by GWAS as associated with risk of childhood asthma: 
PDE4D, PTPRD, RBFOX1, ROBO2, and RYR2 [78]; MUC16 also correlated with ROBO1, 
which encodes an interaction partner of ROBO2. The top-ranked GWAS gene, RYR2, 
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encodes a calcium channel thought to play an important role in asthma pathogenesis 
[78]. Neither RYR2, nor any of the other 11 GWAS associated genes, were detected as 
differentially expressed after IL13 treatment, although two genes encoding proteins that 
interact with RYR2 (CALM1 and CMK2D) were [76]. These data suggest that the analy-
sis of gene correlations has the potential to substantially augment biological insights that 
come from studies of differential gene expression.

Aggregation into “meta‑cells” impedes the identification of gene correlations

The ability of BigSur to detect biologically relevant gene correlations with controlla-
ble false discovery reflects its ability to handle the highly skewed distributions of scR-
NAseq data, distributions that are usually dominated by many zeros. In the scRNAseq 
literature, several other approaches have been proposed to compensate for data sparsity, 
such as filling in zeros by imputation (estimating values based on closely related cells) 
or aggregating groups of cells (merging measurements in similar cells, or across techni-
cal replicates of the same cells). Aggregation essentially replaces groups of cells with a 
smaller number of “metacells” or “pseudocells”, essentially implementing a small-scale 
version of “pseudobulking” [79–83]. This approach has proved useful in improving the 
accuracy of identifying differentially expressed genes, and in analyses in which genes are 
clustered into weighted gene co-expression networks [84, 85].

To the extent that aggregation reduces data sparsity, one might expect it also to 
improve accuracy in discovering gene–gene correlations. In fact, at least one group [86] 
has proposed this explicitly, developing a method that starts with normalized, log-trans-
formed scRNAseq data, and averages values among groups of cells that are judged suf-
ficiently similar (based on Leiden clustering). Using this method, they claimed that one 
can enhance the ability to detect meaningful correlations in scRNAseq data.

We investigated this claim, however, and came to the opposite conclusion. We dis-
covered that grouping cells into metacells markedly inflates false positive correlations, 
a phenomenon not explored by [86]. This effect is easily demonstrated by applying their 
procedure to synthetic data in which gene expression values were sampled randomly and 
independently from Poisson-lognormal distributions (coefficient of variation of underly-
ing lognormal distribution = 0.5), with cells sequenced to different depths, as in Figs. 1 
and 2. Using such data as a starting point, we calculated correlation coefficients six dif-
ferent ways (Fig. 7A–C), using the Fischer formula to define the threshold for statistical 
significance (with PCC′ we also used a Benjamini–Hochberg adjusted FDR threshold 
of < 2%, as determined by BigSur). In such a data set, an accurate method should detect 
no significant correlations, positive or negative.

As expected, using PCCs calculated directly from raw, unnormalized data, nearly 100 
million artifactually significant positive correlations were identified, and these were not 
eliminated by data normalization (scaling UMI values to sequencing depth). Log-trans-
formation of the data (using a “pseudocount” of 1) reduced the number of false positives 
to 382,511, probably because it greatly reduced the range of variability between high 
and low values. In contrast, when log-transformed values were grouped and averaged 
according to the procedure of [86], clustering the 3570 cells and grouping them into 100 
metacells, we observed a massive inflation of large positive and negative values of PCC 
(Fig. 7B, C), among which over 2 million were judged significant by the Fischer formula 
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(the formula automatically takes into account the reduced number of cells). This was not 
just a consequence of failure to compensate for variable sequencing depth, because even 
when we created data with equal sequencing depth across all cells, we still observed that 
grouping into metacells produced just as many false correlations (Fig. 7B, C).

In contrast, PCC′, calculated from unnormalized data, did much better, producing 
fewer than 78,000 false correlations, as judged using the Fischer formula, and no cor-
relations, positive or negative, when the FDR was appropriately calculated using BigSur.

These results indicate that, even if grouping cells increased the likelihood of detecting 
true correlations, the effect would likely be overwhelmed by the creation of so many false 
ones. To assess the net effect, we compared the method of [86] with BigSur using the full 
set of melanoma cells analyzed in Fig. 3. As diagramed in Fig. 7D, we performed group-
ing both on Log-transformed normalized data, as per [86], and on modified corrected 
Pearson residuals (Pij’), hoping that the latter might better correct for variable sequenc-
ing depth. Consistent with what was seen with synthetic data, grouping produced many 
more correlations than BigSur, although the use of modified corrected Pearson residuals 
reduced this to some extent (Fig. 7E).

Fig. 7  Grouping into “metacells” creates false positive correlations. A–C Analysis of synthetic, uncorrelated 
data. A Pipelines for data processing. Each box denotes a step at which a Pearson correlation coefficient (PCC 
or PCC′) was calculated, with the color of the box corresponding to the colors used in the following plots. B 
Histograms of correlation coefficients obtained from the data sets in panel (A). Arrows show the thresholds 
above which observed correlations were judged statistically significant. C Numbers of correlations in panel 
(B) that were judged to be significant (p < 0.02). D–F Analysis of melanoma cell line data. D Pipeline for data 
processing. The colors of each box correspond to the colors in panels (E, F). E Number of correlations judged 
significant in data sets in D. Darker shading denotes the negative correlations; lighter are positive correlations. 
F Enrichment for known protein–protein interactions among the correlations shown in (E). The value of n in 
each case gives the absolute number of protein–protein interactions. Of the 12,129 interactions detected by 
BigSur, 11,373 were also detected using grouping of log-normalized data and 10,773 were detected using 
grouping of modified corrected Pearson residuals (10,324 were shared among all three)
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To assess the recovery of true positives, we quantified enrichment for pairs of genes 
with known protein–protein interactions (Fig. 7F), as such genes are more likely than 
random genes to be co-expressed. As described earlier, such interactions were enriched 
more than seven-fold among the pairs of genes found significantly positively correlated 
by BigSur. In contrast, even though grouping into metacells identified significant cor-
relations among more total gene pairs with known protein–protein interactions, the 
enrichment over what would have been expected by chance was less than two-fold, sug-
gesting an accuracy barely better than chance levels.

The reason grouping generates so many false positive correlations appears to be 
generic to the process of aggregating cells by similarity, and not specific to details of 
the method of grouping of [86], as we can see similar effects using synthetic data and 
other, simpler algorithms for grouping cells. These observations nicely illustrate how, 
when dealing with correlations, even seemingly innocuous empirical fixes can create 
unexpected problems, and underscore the value of BigSur in provided a principled, the-
ory-grounded approach to assessing both the magnitude and significance of gene–gene 
correlation.

Discussion
The above results suggest that bona fide communities of co-regulated genes can be 
identified with high specificity by carefully mining weak correlations within groups of a 
thousand or fewer relatively homogeneous cells. BigSur achieves the accuracy to do this 
first by correcting measures of correlation for unequal sequencing depth and the added 
variance contributed by gene expression noise, and subsequently by estimating an indi-
vidual p value for each gene pair—thereby overcoming the strong effect of gene expres-
sion distribution on the likelihood of correlation arising by chance. In contrast, the use 
of uncorrected PCCs to identify co-regulated genes performed poorly on both synthetic 
and real scRNAseq data, as did at least one method of compensating for data sparsity by 
cell aggregation.

In developing BigSur, we sought to avoid normalization steps and expression thresh-
olds and to minimize user-provided parameters to the greatest extent possible. The 
major user input to BigSur, besides a UMI matrix, is a coefficient of variation for gene 
expression noise, c, which can be quickly estimated by fitting a plot of the modified cor-
rected Fano factor against gene expression level (Fig. 2B). In reality, the magnitude of the 
noise of gene expression may be different for different genes, and for some the Poisson 
log-normal distribution may not be the best approximation of the noise. Although these 
factors likely degrade the performance of BigSur, we note that the value of c only signifi-
cantly impacts the highly expressed genes, for which (due to low sparsity) the detection 
of significant correlations is a less challenging task.

A more subtle source of potential error comes from fact that, in calculating modi-
fied corrected Pearson residuals, the value of µij used by BigSur is determined empiri-
cally from a finite set of cells, i.e., it is an estimator of µij . Furthermore, whereas it is an 
unbiased estimator when µ is Poisson-distributed, this is not generally the case for more 
skewed distributions, such as Poisson-lognormal [43]. It is unknown whether these 
sources of error have much impact on the determination of correlation coefficient p val-
ues by BigSur, and additional work will be necessary to investigate this question.
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Despite these concerns, the ability of BigSur to identify gene communities that are 
closely related in function (Table 1), as well as add new, functionally related genes into 
known gene sets (Figs. 6, S9), suggests that it already operates at a level of performance 
that can be useful to cell and tissue biologists. Particularly interesting are the questions it 
raises about linkages within communities—for example, why do genes encoding cystatin 
endopeptidase inhibitors (CST1, CST4, CSTB) correlate with genes involved in glycolysis 
and cellular respiration (community E)? Why do genes encoding protein chaperones cor-
relate with genes involved in RNA processing (community G)? Why do genes involved in 
Golgi and lysosome function correlate with genes related to hypoxia (community J)?

The data in Table 1 also suggest that new cell biology may be discovered by examin-
ing genes labeled “not accounted for”, i.e., genes that are associated with a community 
but do not, as a group, overlap substantially with any mSigDB dataset. For example, 38 
of the 213 genes that correlate with cell cycle community B are not currently annotated 
as cell-cycle related. Among the strongly-coupled unfolded-protein response genes in 
community C, one also finds genes encoding secreted (GDF15, PSAP, SPARC​) and cell 
surface molecules (DDR2, GPNMB, ITGA4, IL1RAP, PMP22, SLC1A5); the potential 
relationship of these genes to cellular stress responses may deserve heightened attention. 
Indeed, each of the communities in Table 1 suggests new and unexpected forms of co-
regulation of gene expression. It will be interesting to see how many of these are repro-
duced in other cell types—a task that can be efficiently approached by applying BigSur to 
the large number of existing scRNAseq data sets.

It is instructive to note that few of the gene–gene relationships detected by BigSur 
could have been revealed by the typical analytical steps of cell clustering and identifica-
tion of differentially expressed genes, as most of the gene communities identified here 
are not associated with sufficient total variation in gene expression to be useful drivers of 
cell clustering. On the other hand, clustering did play an important role here in reducing 
the heterogeneity of the sample to which BigSur was applied. Although most of the gene 
communities that were identified using the 1582-cell subcluster 1.2 were also observed 
when BigSur was applied to the entire sample of 8640 cells (not shown), clusters were 
more difficult to visualize and analyze in the latter case, thanks to a large background of 
cell-type (or cell-state)-specific gene expression (which generated numerous additional 
correlations). This experience suggests that iterative application of BigSur analysis and 
clustering (potentially using correlated gene communities as features) can provide a use-
ful pipeline for identifying meaningful gene communities of manageable size.

It is interesting that one of the strongest axes of variation we detected in this study 
involved mitochondrially-encoded genes and genes coding for ribosomal subunits, with 
both communities strongly anti-correlating with each other (both before and after “dam-
aged” cell removal and subclustering). Because the mitochondrial community consists 
only of mitochondrially-encoded, and not cytoplasmically-encoded, mitochondrial 
genes, the simplest interpretation is that this community reflects cell-to-cell variation in 
the number of mitochondria (or, more accurately, mitochondrial genomes). What then 
might explain anti-correlation between mitochondrial number and transcripts for ribo-
somal proteins? Given that protein synthesis requires both specialized machinery (ribo-
somes) and a source of energy (mitochondria), one might expect to see positive, rather 
than negative, correlation between the agents that orchestrate these processes. Yet this 
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intuition is correct only in a long-time-averaged sense and does not necessarily apply if 
demand for protein synthesis fluctuates. In mammalian cells, ribosomal protein mRNAs 
are long-lived, with half-lives in the 5–10 h range [87], whereas mitochondria can rep-
licate on a time scale of 1–2 h [88]; accordingly, one process may systematically lag the 
other, producing the kind of anti-correlation we observe here. While this interpretation 
is speculative, it demonstrates how the analysis of gene–gene correlations can motivate 
new hypotheses about transcriptome-scale regulation of cell biology.

Under the expectation that most networks of gene correlation reflect shared transcrip-
tional regulation, we might have expected to identify upstream transcription factors 
more frequently in most of the networks we discovered. In some cases, this clearly did 
occur: For example, the transcription factors ATF4, AT6, and XBP1, which were detected 
in community C, are known controllers of the unfolded protein response, the compo-
nents of which show up in the same community. Transcription factors related to cell 
cycle progression and DNA damage-repair strongly associated with cell-cycle commu-
nities A and B. ZKSCAN1, a transcription factor targeted to mitochondria [89] asso-
ciates with the mitochondrially-encoded gene community H. However, in many cases, 
expected transcription factors (e.g., SREBF1 or SREBF2 in community K) were not 
observed. This may reflect limitations in statistical power, as transcription factor genes 
tend to be expressed at a somewhat lower level than other genes—although in this data 
set expression of the average observed transcription factor was only about half that of 
the average observed gene. Another likely explanation is that gene regulation is often 
achieved through the post-translational modification of transcription factors, rather 
than regulation of their mRNAs. Alternatively, it may reflect the importance of factors 
that act post-transcriptionally, such as miRNAs (which were not assessed in this data 
set), in controlling gene expression. In future, it will be important to extend BigSur to 
take account not only of miRNAs but also of “multi-omic” features, such as chromatin 
accessibility.

Although we have focused here primarily on the use of BigSur as a tool for discovery 
of gene–gene correlations, it is worth pointing out that the intermediate steps in the Big-
Sur pipeline produce useful tools for other analytical procedures, some of which were 
exploited here. For example, methods for feature selection for cell clustering commonly 
involve thresholds (e.g., expression levels) and cutoffs (e.g., numbers of features) that are 
arbitrary, and may not be ideal choices for every data set. Use of the modified corrected 
Fano factor φ′ , and its associated p values, can provide a less arbitrary approach to fea-
ture selection, which can outperform other methods on challenging tasks, such as find-
ing rare cell types, or subclustering cells that differ only modestly [90]. In addition, as we 
did here when dividing cells into subclusters based on the expression of ribosomal and 
mitochondrial genes (Fig. 4), one may also use communities of correlated genes them-
selves as features for clustering—in this way leveraging not just variation but co-varia-
tion to drive clustering. Finally, whereas it is common practice to cluster cells based on 
their normalized expression values, the matrix of modified corrected Pearson residuals 
that BigSur calculates almost certainly provides a more accurate starting point for clus-
tering, as it avoids artifacts introduced by normalization, and corrects for the inflated 
variance associated with highly expressed genes.
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Conclusions
It has long been suspected that, by mining gene expression correlations within single 
cell transcriptomes, it should be possible not only to identify groups of genes that dis-
tinguish among cell types, but also discover small-scale gene regulatory networks that 
operate within cell types. We have provided evidence here that this goal can be achieved, 
first by modifying and correcting the metric of correlation and then using an analytical 
approach to assign statistical significance to every gene pair. When applied to scRNAseq 
data, this dramatically reduced the number of false positives that would have been iden-
tified by other methods, and enabled the identification of biologically relevant gene com-
munities, both known and novel.

Methods
As the first step in calculating φ′ and PCC′, we begin with “raw” (neither normalized nor 
log-transformed) UMI data and calculate, for each gene in each cell, a cell- and gene-
specific Pearson Residual, defined according to Eq. 1. To do so, we first calculate a cell- 
and gene-specific expected value 

(

µij

)

 which we obtain for each gene by averaging its 
values over all cells, then scaling that in each cell by to the relative proportion of total 
UMI that each cell contains. This is essentially the same procedure used in the simplest 
form of normalization, except that, rather than normalize the data matrix, we are nor-
malizing the term for the mean in the Pearson residual.

Next, each modified Pearson residual is divided by 
√

(

1+ c2µij

)

 , where c is a constant 

between 0.2 and 0.6. Ideally, c should be chosen individually for each gene, depending on 
prior knowledge of the level of gene expression stochasticity, however, in the absence of 
prior knowledge we typically find c empirically (see Fig. 2B). It should be noted that, for 
many scRNAseq data sets, most values of µij will be < 1, meaning the effect of the choice 
of c on most of the data is often relatively small. To obtain φ′ for each gene, the Pearson 
residuals for each cell are squared, summed, and divided by n − 1, where n is the number 
of cells.

To calculate p values for φ′ any given gene, we consider the null hypothesis to be the 
expected number of transcripts in each cell is µij , i.e., the total number of transcripts 
across all the cells partitioned in proportion to the number of total UMI in each cell. As 
noted above, because BigSur determines the value of µij empirically—by summing up 
genes UMI across all cells and multiplying by the fraction of total UMI in each cell—µij 
is technically an estimator of the cell-specific expectation value for each gene and cell.

To calculate p we need to know how the sums of squared Pearson residuals should 
be distributed for any given set of µij and c. As discussed above, we take µij to have a 
Poisson-log-normal distribution, allowing us to calculate the moments of the distribu-
tion of squared Pearson residuals from the moments of the Poisson and log-normal dis-
tributions, and from there the moments of the distribution of sums of squared Pearson 
residuals. In the end we obtain, for each gene j, a finite set of moments (typically 4 or 
5) for the distribution of φ′ that would be expected under the null hypothesis for that 
particular gene, given the values µ1j ,µ2j ,µ3j . . . µnj and c. We then use Cornish-Fisher 
approximation of the Edgeworth expansion [91] as a reasonably computationally effi-
cient way to approximate the p value associated with any given observation of φ′ , given 
that distribution.
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The procedure for obtaining PCC′ proceeds in the same fashion, starting with the 
same modified corrected Pearson residuals, but now taking the dot product of the vec-
tors of Pearson residuals for each pair of genes, and dividing by n − 1 times the geomet-
ric mean of the φ′ values for those genes (Eq. 2). Moments of the expected distributions 
of PCC′ are calculated analytically in exactly the manner described above, with the slight 
complication that the φ′ terms in the denominator are not strictly independent of the 
Pearson residuals in the numerator, but to a good first approximation may be treated as 
such, as they aggregate information across all the Pearson residuals. The Cornish-Fisher 
approximation is again used, as described above, to assign p values to both tails of the 
resulting distribution. In solving the 4th degree polynomial equations produced by this 
method (a computationally slow step), we improve speed by sacrificing accuracy specifi-
cally for those p values that clearly fall below thresholds of interest.

Because the number of possible gene–gene correlations scales roughly as the square of 
the number of genes, the need to correct for multiple hypothesis testing is particularly 
acute. Given that the observations are not independent from one another, Bonferroni 
correction is clearly too conservative, and thus we use the Benjamini–Hochberg algo-
rithm [49] for controlling the false discovery rate.

Simulating scRNAseq data

In Fig.  2, we simulate the expression of 1000 genes across 999 equivalent cells, where 
by equivalent we mean that, for each gene, a single “target” transcript level was chosen 
from a log-normal distribution, the mean of which was selected so that the logarithm of 
its value varied uniformly across the gene set, over the range from 0.035 to 3467 tran-
scripts per cell. The coefficient of variation of each log-normal distribution was taken 
to be 0.5 for all genes. Next, we generated a set of 999 scaling factors, drawn from a log-
normal distribution with mean of 1 and coefficient of variation of 0.75, selected so that 
the logarithm of the value varied vary smoothly across the range. Finally, we generated a 
UMI value to each gene in each cell that was a random variate from a Poisson distribu-
tion with a mean equal to the target for that gene times the scaling factor for that cell. 
The result was a set of gene expression vectors of length 999, with mean values varying 
between 0.001 and 231.

In Fig.  7A–C, synthetic data were generated as in Fig.  2, except that the number of 
genes was increased to 15,369 and the number of cells increased to 3570. Grouping cells 
into 100 metacells was carried out as described by [86]. In Fig. 7D–F, the full melanoma 
cell dataset was used (17,451 genes × 8640 cells; see below), and grouping was again per-
formed to create 100 metacells.

Analysis of melanoma cell line data

Data from droplet-based sequencing of subcloned WM989 melanoma cells (GEO acces-
sion GSE99330), which had been pre-processed to remove UMI judged not to be associ-
ated with true cells, were imported and further pre-processed in the following way: First 
we removed all known pseudogenes (comprehensive lists of human pseudogenes were 
obtained from HGNC and BioMART). Pseudogenes derived by gene duplication or ret-
rotransposition are often highly homologous to their parent genes, creating ambiguity in 
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the mapping of the short-read sequences used in scRNAseq. When pseudogenes were 
not removed from analysis, we frequently detected strong correlations between pseudo-
genes and parent genes that very likely represented the effects of ambiguous mapping, 
rather than true correlation. After pseudogene removal, the number of detected genes 
was 27,526. As both theory (Fig. 1) and experience indicated that statistically significant 
correlations were usually unobservable for genes with UMI in fewer than 0.001% of cells, 
we further eliminated genes expressed in fewer than 8 of the 8640 cells; this reduced 
the size of the gene set to 17,451, and the number of possible unique correlations to 
152,259,975 (while not strictly necessary, this step reduces computational time by ~ 2.5 
fold, since the number of correlations to test varies approximately quadratically with the 
number of genes).

Analysis of cultured airway epithelial cell data

Data from a study comparing untreated and acutely IL13-treated cultured human air-
way epithelial cells were downloaded from GSE145013 [76]. To confine analysis of cor-
relations to a relatively homogeneous cell type, we subsetted only those cells clustered 
into groups composed primarily of the “secretory” cell type; specifically, related clusters 
c5 and c6 contained most of the secretory cells of the treated and untreated samples, 
respectively, and analysis was confined to cells of these clusters. This resulted in a data-
set of 407 IL13-treated 303 untreated cells. After removal of pseudogenes, and gene with 
fewer than 80 total UMI, each dataset contained the same set of 15,268 genes.

Calculating paralog pair and protein‑interaction enrichment scores

A curated list of 3132 paralogous pairs of human genes was downloaded from [92]. 
A list of physical human protein–protein interactions was downloaded from BioGrid 
(https://​downl​oads.​thebi​ogrid.​org/​File/​BioGR​ID/​Relea​se-​Archi​ve/​BIOGR​ID-4.​4.​
218/​BIOGR​ID-​MV-​Physi​cal-4.​4.​218.​tab3.​zip) and supplemented with additional data 
from HIPPIE v2.3 (http://​cbdm-​01.​zdv.​uni-​mainz.​de/​~mscha​efer/​hippie/), to produce 
a list of 790,008 gene pairs. To calculate enrichment, we first calculated the fraction 
of statistically significantly positively correlated gene pairs identified by BigSur that 
overlapped with either the paralog-pair or protein–protein interaction pair database. 
Next, we removed from the databases all gene pairs involving genes not detected in 
the scRNAseq data and divided the remaining number by the total number of possible 
gene–gene correlations (i.e. m(m − 1)/2, where m is the number of genes in the scR-
NAseq data) to yield the expected frequency of paralogous or interacting pairs under 
the hypothesis they are randomly distributed among all possible pairwise correlations. 
The ratio between the observed frequency and expected frequency was considered to 
be the fold enrichment.

Extracting (and pooling) gene communities

BigSur generates a matrix in which rows and columns are genes, and entries are signed 
equivalent PCCs—which are derived by using the inverse of the Fisher formula on the p 
values returned by BigSur, together with the signs of the values of PCC′. Although it is a 
derived quantity, the equivalent PCC is a useful form in which to store correlation data, 
not only because it is signed, but also because it adjusts for differences in data length 

https://downloads.thebiogrid.org/File/BioGRID/Release-Archive/BIOGRID-4.4.218/BIOGRID-MV-Physical-4.4.218.tab3.zip
https://downloads.thebiogrid.org/File/BioGRID/Release-Archive/BIOGRID-4.4.218/BIOGRID-MV-Physical-4.4.218.tab3.zip
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
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(number of cells), so that similar “strengths” of correlation would be expected to trans-
late into similar equivalent PCCs, even across samples with very different numbers of 
cells (cell number has a large effect on the relationship between correlation strength and 
p value).

Only equivalent PCCs that were judged statistically significant according to a user-
supplied threshold (e.g., a Benjamini–Hochberg FDR) were included, all others being set 
to zero. This matrix was converted to an unweighted adjacency matrix (all nonzero val-
ues replaced with 1) and the walktrap algorithm (with a default setting of 4 steps) was 
used to identify initial communities [52]. Because this produces communities connected 
by both positive and negative links, each community was then subjected to a second 
round of community-finding, after first setting negative links to 0, thus allowing sub-
communities that negatively correlate with each other to be separated.

To identify instances in which walktrap had subdivided communities too finely, we 
manually examined the number of positive correlations between genes in each commu-
nity and each other community, recursively merging communities in which the number 
of inter-community correlations was particularly large (compared with the number of 
possible links between communities). In addition, in rare cases in which communities 
returned were very large (e.g., in the thousands), we subdivided them by applying walk-
trap an additional time.

Cell clustering based on correlated features

Feature selection refers to the process of identifying genes that capture important dimen-
sions of variation on which cells may be clustered. A variety of approaches have been 
proposed for identifying such genes, and many work equivalently under most circum-
stances (with tens of thousands of genes, clustering is often a highly over-determined 
problem). Under challenging circumstances (e.g. when the number of true difference 
separating clusters is small, or the number of cells in a state is small), we have shown [90] 
that φ′ is a measure of variability at least as good as others, and because BigSur returns 
both φ′ and p values, one may avoid selecting too large a set of features (which can defeat 
clustering algorithms).

It has also been pointed out, however, that not only the statistical features of individ-
ual genes, but also their interdependencies (i.e., correlations) should ideally be used to 
inform clustering [24]. We recognized that the communities identified by BigSur repre-
sent ideal sources of features, particularly if we emphasize those community members 
that are the most highly connected to each other. We also recognized that the modi-
fied corrected Pearson residuals generated by BigSur provide a more sensible set of vec-
tors to use as the input to clustering than either raw or normalized UMIs (for the same 
reasons that φ′ and PCC′ are improvements over their unmodified, uncorrected forms). 
Briefly, we used the modified corrected Pearson residuals to construct shared nearest 
neighbor graphs based on the top 50 principal components, with k = 20 and a Jaccard 
similarity threshold of 1/15; this was followed by Leiden clustering [93] and UMAP visu-
alization, essentially as in the Seurat analysis package [94].

With this approach, we found that well-defined clusters can often be reliably obtained 
using sets of as few as 50–75 highly connected genes. This was used to repetitively 
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subcluster the scRNAseq data from WM989 melanoma cells, at each step running Big-
Sur and using the 50 most connected genes of the clusters containing the majority of 
ribosomal genes, together with the 50 most connected genes of those containing the 
majority of mitochondrially encoded genes, as features.

Graphical display of correlations

Matrices representing statistically significant correlations were plotted using the Graph-
Plot function of Mathematica software, in which vertices were arrayed either by Spring 
Embedding or Spring Electrical Embedding. Edges were colored green when positive 
and red when negative. Vertex locations were first determined according to the graph 
produced after deleting negative edges, after which vertices connected only by nega-
tive edges were added in. Symbols used to represent vertices were scaled so that their 
areas were proportional to the mean expression level of the gene represented. Correla-
tion strengths (the absolute values of the equivalent PCCs) are not represented on these 
images.
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Additional file 1: Table S1. Analysis of gene communities using the Database for Annotation, Visualization and Inte-
grated Discovery. Gene communities in Table 1 were analyzed using DAVID functional analysis [58] and the following 
databases: UP_KW_BIOLOGICAL_PROCESS, UP_KW_CELLULAR_COMPONENT, UP_KW_MOLECULAR_FUNCTION, 
UP_KW_PTM, UP_SEQ_FEATURE, GOTERM_BP_DIRECT, GOTERM_CC_DIRECT, GOTERM_MF_DIRECT, BBID, BIOCARTA, 
and KEGG_PATHWAY. Results shown are those that met default threshold requirements to display in the Functional 
Annotation Chart.  Results for each community are given on a separate spreadsheet.

Additional file 2: Appendix. Mathematical formulae and derivations

Additional file 3: Figure S1. Significance of uncorrected Pearson correlation coefficients, as calculated by BigSur 
versus the Fisher formula, binned by gene expression. scRNAseq data were as described in Fig. 3. Data points repre-
senting pairs of genes were divided into 21 bins based on the mean expression levels of each gene, and the results 
for each bin were plotted as described in Fig. 3C. The abscissa shows PCCwhile the ordinate gives the negative log10 
of p values determined by BigSur, i.e., larger values mean greater statistical significance. Orange and gray shading 
indicate gene pairs judged significant by BigSur. Blue and orange show gene pairs that would have been judged 
statistically significant by applying the Fisher formula to the PCC, using the same p-value threshold as used by 
BigSur. The blue region contains gene pairs judged significant by the Fisher formula only, while the unshaded region 
shows gene pairs not significant by either method. Numbers in the lower right corner of each panel are the total 
numbers of possible correlations, statistically significant correlations according to the Fisher formula, and statistically 
significant correlations according to BigSur.

Additional file 4: Figure S2. Significance of modified corrected Pearson correlation coefficients,, as calculated by Big-
Sur versus the Fisher formula, binned by gene expression. scRNAseq data were as described in Fig. 3. Data points rep-
resenting pairs of genes were divided into 21 bins based on the mean expression levels of each gene, and the results 
for each bin were plotted as in Fig. S1.  The inset compares the PCC′-p value relationship determined by BigSurwith 
that predicted by the Fisher formula, showing that, for highly expressed genes, the two methods agree well.
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Additional file 5: Figure S3. Distribution of equivalent PCCs. The p values obtained by BigSur for the melanoma cell 
line were transformed using the inverse of the Fisher formula to a set of “equivalent” PCCs. Since the Fisher formula 
operates on the absolute values of correlations, each calculated equivalent PCC was assigned the sign of the PCC′ 
value for the same gene pair. Equivalent PCCs provide a measure of correlation strength that can be compared 
across data sets with differing numbers of cells. They may be understood as a measure of how strongly correlated 
two normally distributed vectorswould need to be to produce the observed p value. Here, only those gene pairs 
judged significant by BigSur are shown. The fact that so many weakly correlated gene pairsare nevertheless statisti-
cally significant is a function of the long vector length in this experiment.

Additional file 6: Figure S4. Gene communities A and B from cell cluster 1.2. Green edges depict significant correla-
tions. Transcription factor vertices are displayed as yellow boxes with gene names in blue. In the boxed insets the 
same graphs are overlayed in brown to highlight links supported by known protein-protein interactions.

Additional file 7: Figure S5. Gene communities C, and D from cell cluster 1.2. Genes and links are highlighted as in Fig. 
S4.

Additional file 8: Figure S6. Gene communities E, F, G and H from cell cluster 1.2. Genes and links are highlighted as in 
Fig. S4.

Additional file 9: Figure S7. Gene communities I, K, L and M from cell cluster 1.2. Genes and links are highlighted as in 
Fig. S4. In communities L and M, links supported by known protein-protein interactions are highlighted in brown.

Additional file 10: Figure S8.  Graphical representation of positive correlations among genes significantly upregulated 
in lung epithelial cells treated with IL13 [76].  Of 419 upregulated genes, 313 form a single connected community in 
the treated cells, whereas 45 of those correlate in the untreated group.  Green lines represent statistically significant 
positive correlations. Transcription factors are marked with blue text and a yellow box.

Additional file 11: Figure S9. Gene-gene correlation among genes that positively correlate with MUC16 in IL13-
treated secretory lung epithelial cells. Genes were clustered using complete-linkage hierarchical clustering. Darker 
color indicates stronger correlation; white indicates no significant correlation
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